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SUMMARY

Theabilityofcirculating tumorcells (CTCs) to formclus-
ters has been linked to increased metastatic potential.
Yet biological features and vulnerabilities of CTC clus-
ters remain largely unknown. Here, we profile the DNA
methylation landscape of single CTCs and CTC clus-
ters from breast cancer patients and mouse models
on a genome-wide scale. We find that binding sites
for stemness- and proliferation-associated transcrip-
tion factors are specifically hypomethylated in CTC
clusters, including binding sites for OCT4, NANOG,
SOX2, and SIN3A, paralleling embryonic stem cell
biology. Among 2,486 FDA-approved compounds, we
identifyNa+/K+ATPase inhibitors thatenable thedisso-
ciation of CTC clusters into single cells, leading to DNA
methylation remodeling at critical sites andmetastasis
suppression. Thus, our results link CTC clustering to
specific changes in DNA methylation that promote
stemnessandmetastasisandpoint tocluster-targeting
compounds to suppress the spread of cancer.

INTRODUCTION

Circulating tumor cells (CTCs) are those cells that depart from

cancerous lesions and enter the bloodstream (Alix-Panabières

and Pantel, 2013). Although extraordinarily rare compared with

blood cells and forced to strive for survival in circulation, CTCs

are considered to be precursors of metastasis in various cancer

types, including breast cancer (Aceto et al., 2015; Alix-Pana-

bières and Pantel, 2014). CTCs are found in the blood of cancer

patients as single CTCs and CTC clusters (Fidler, 1973; Liotta

et al., 1976), with the latter featuring a higher ability to seed

metastasis (Aceto et al., 2014). However, it is unknown what

drives their enhanced metastatic potential and what are the vul-

nerabilities of clustered CTCs.
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Abnormal DNA methylation patterns, including both genome-

wide hypomethylation and hypermethylation, have been associ-

ated with several human cancers (Ehrlich, 2002, 2009; Feinberg

et al., 2006; Klutstein et al., 2016; Lee et al., 2006). Generally,

these cancer-associated epigenetic modifications appear to

affect distinct genomic areas, with hypomethylation favoring reg-

ulatory and repetitive elements versushypermethylation,which is

more frequent in CpG islands (Ehrlich, 2002). Both modifications

have the ability to alter the expression of neighboring genes and

contribute to the cancer phenotype (Ehrlich, 2009; Klutstein et al.,

2016). For regulatory elements, loss of DNA methylation at tran-

scription factor binding sites (TFBSs) can designate active tran-

scription factor networks or networks primed for activation at

later stages, e.g., during processes such as the derivation of

induced pluripotent stem cells from differentiated cells (Lee

et al., 2014) or cancer progression (Feinberg and Vogelstein,

1983). Although DNA methylation analysis of primary tumors is

extensively investigated (Feinberg and Vogelstein, 1983; Klut-

stein et al., 2016), the forces that shape the DNAmethylome dur-

ing metastatic dissemination are largely uncharacterized.

Here, we combine microfluidic-based CTC capture from

breast cancer patients and mouse models, single-cell resolution

DNA methylation and RNA expression analysis, a drug screen

with 2,486 FDA-approved compounds, and functional validation

studies inmousemodels to gain insights into the biology and vul-

nerabilities of CTC clusters. Our study provides a genome-wide

DNA methylation landscape of single and clustered CTCs in

breast cancer, highlighting fundamental differences that affect

metastasis and enabling the identification of cluster-targeting

compounds with immediate clinical applicability.
RESULTS

Identification of Differentially Methylated Regions in
CTC Clusters and Single CTCs
We first sought to identify active transcription factor networks by

means of accessible TFBSs in single and clustered human
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breast CTCs,matchedwithin individual liquid biopsies, through a

genome-wide single-cell resolution DNA methylation analysis.

To this end, blood samples were drawn from 43 patients with

progressive breast cancer and processed with the Parsortix de-

vice (Xu et al., 2015), a microfluidic technology that allows a size-

based, antigen-agnostic enrichment of CTCs from unprocessed

blood samples, specifically adapted to achieve a capture rate of

>97.2% for single CTCs and >99.3% for CTC clusters, and no

artificial cluster formation during sample processing (Figures

S1A and S1B). Upon capture, live CTCs were stained for cell sur-

face expression of EpCAM, HER2, and EGFR, and counter-

stained with antibodies against CD45 to identify contaminant

leukocytes (Figure S1C). Upon staining verification, we identified

matched single and clustered CTCs in 19%of the analyzed sam-

ples (8/43 patients), and a total of 18 marker-positive single

CTCs and 29 marker-positive CTC clusters from four patients

were individually micromanipulated and deposited in lysis buffer

for single-cell resolution whole-genome bisulfite sequencing

(Table S1) (Farlik et al., 2015, 2016). In parallel, we isolated spon-

taneously generated GFP-labeled single CTCs and CTC clusters

from threemouse xenograft models, including two human breast

CTC-derived cell lines (BR16 and BRx50) and the human breast

cancer cell lineMDA-MB 231 (lungmetastatic variant, referred to

as LM2) (Minn et al., 2005; Yu et al., 2014). In this setting, we indi-

vidually micromanipulated 71 single CTCs and 48 CTC clusters

(Table S1) and also processed them for single-cell resolution

whole-genome bisulfite sequencing (Farlik et al., 2015, 2016).

Samples with a low coverage (< 1,000 unique CpGs) or a low

bisulfite conversion efficiency (CG/CHG/CHH < 97%)—corre-

sponding to 10.7% of patient-derived samples and 0.8% of

xenograft-derived samples—were excluded from the analysis,

resulting in a total of 89 single CTCs and 71 CTC clusters from

patients and xenografts. On average, we achieved 3.68% CpG

coverage for single CTCs and 5.86% CpG coverage for CTC

clusters, in line with recent single-cell whole-genome bisulfite

sequencing studies (Farlik et al., 2015, 2016) (Figures S1D and

S1E; Table S2). As expected, principal component analysis

(PCA) mainly segregated CTCs based on the patient of origin

or the specific xenograft model (Figures S1F and S1G). Meta-

gene plot of CpG methylation revealed comparable methylation

levels between single CTCs and CTC clusters across CpG

islands, gene bodies, upstream (promoters) and downstream

regions, including a drop of CpG methylation around the tran-

scriptional start site, as expected (Figures S1H and S1I). We

then specifically investigated differentially methylated regions

(DMRs) between single CTCs and CTC clusters, evaluating

average methylation levels in overlapping 5-kb windows, as pre-

viously established for single-cell DMR analysis (Farlik et al.,

2015, 2016). For patient-derived CTCs, with this approach we

identified 3,347 DMRs with a R 80% methylation difference

between single CTCs and CTC clusters. Of these, 1,305 regions

were hypomethylated in CTC clusters and 2,042 were hypome-

thylated in single CTCs (Figure 1A). We then looked at xenograft-

derived CTCs, and to evaluate a comparable number of DMRs

as found in patients, we assessed overlapping regions with

a R 70% methylation difference between single CTCs and

CTC clusters. We found a total of 1,430 DMRs, of which 909 hy-

pomethylated in CTC clusters and 521 hypomethylated in single
CTCs (Figure 1B). We then analyzed DMRs from both patient-

and xenograft-derived CTCs using i-cisTarget (Herrmann et al.,

2012). With this analysis, among hypomethylated regions that

are specific to either single CTCs or CTC clusters, we found a

significant enrichment for several TFBSs, many of which over-

lapped between patient- and xenograft-derived CTCs (Figures

1C and 1D), thus allowing us to define specific hypomethylated

TFBSs that globally characterize either single CTCs or CTC

clusters in both patients and xenografts. Integrated gene

ontology (GO) and pathway analysis of global CTC cluster hypo-

methylated TFBSs revealed a remarkable enrichment for stem-

ness-related transcription factors that coordinately regulate

proliferation and pluripotency, including OCT4, NANOG, SOX2,

and SIN3A, paralleling embryonic stem cell (ESCs) biology (Fig-

ure 1E) (Kim et al., 2008; McDonel et al., 2012; Niwa, 2007; Sa-

unders et al., 2017; van den Berg et al., 2010). Differently, single

CTCs featured hypomethylation of other TFBSs, including those

that are occupied by MEF2C, JUN, MIXL1, and SHOX2,

commonly enriched in various cancers (Hong et al., 2014; Jiao

et al., 2010; Laszlo et al., 2015; Raymond et al., 2014), yet inde-

pendent of a core pluripotency network (Figure 1F) (Kim et al.,

2008, 2010). To gain insights into more subtle changes in

DNA methylation occurring specifically within promoters, gene

bodies, and super enhancer regions, we carried out hypergeo-

metric-based gene set enrichment analysis of genomic features

in xenograft-derived CTCs (displaying a higher homogeneity

compared to patient-derived CTCs). Consistently, this analysis

revealed hypermethylation and H3K27me3 repression of Poly-

comb-repressive complex 2 (PRC2) target gene promoters and

gene bodies (including those for SUZ12 and EED) in CTC clus-

ters (Figures S1J–S1L), as previously alluded to in cancer spec-

imens with stem-like and proliferative features (Avissar-Whiting

et al., 2011; Kron et al., 2013; Lauss et al., 2012; Reddington

et al., 2014; Wolff et al., 2010) and mirroring ESCs biology

(Lee et al., 2006).

Thus, CTC clusters are clearly distinguishable from single

CTCs based on their DNA methylation status at DMRs, where

they mainly feature hypomethylation of bindings sites for stem-

ness- and proliferation-associated TFs, such as OCT4, NANOG,

SOX2, and SIN3A (Figure S1M, shown for patient CTCs), accom-

panied by a subtler hypermethylation of PRC2 target genes in

promoters and gene bodies. This indicates that phenotypic dif-

ferences in circulation affect DNA methylation dynamics.

Cluster-Associated Hypomethylated Regions Correlate
with Poor Prognosis in Patients with Breast Cancer
We then tested whether the regions that are globally hypomethy-

lated in CTC clusters are also hypomethylated in primary breast

cancer. When analyzing bisulfite-sequencing data from The

Cancer Genome Atlas (TCGA), we found 673/2,214 (30.39%)

overlapping probes in 789 breast cancer patients, with 198

and 197 patients displaying either low (quantile Q1) or high

(quantile Q4) methylation levels, respectively, in addition to a

high correlation with genome-wide methylation levels (Figures

2A, S2A, and S2B). Progression-free survival (PFS) analysis on

this subset of patients showed that low methylation levels within

the regions that are hypomethylated in CTC clusters significantly

correlate with a poor prognosis (p < 0.05) (Figure 2B). In contrast,
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Figure 1. Whole-Genome Bisulfite Sequencing Analysis of CTCs from Breast Cancer Patients and Xenografts

(A) Heatmap showing methylation variable regions with R 80% methylation difference between patient-derived CTC clusters and single CTCs (false discovery

rate [FDR] < 0.05).

(B) Heatmap showing methylation variable regions with R 70% methylation difference between xenograft-derived CTC clusters and single CTCs (FDR < 0.05).

(C and D) Normalized enrichment score (NES) representing enrichment (NESR 3.4) of transcription factor binding sites (TFBSs) in CTC cluster hypomethylated

regions (blue) and single CTC hypomethylated regions (red) of patients (C) or xenografts (D), identified using i-cisTarget.

(E and F) Integrated gene ontology (GO) and pathway enrichment analysis of TFBSs identified using i-cisTarget in hypomethylated regions of both patient- and

xenograft-derived CTC clusters (E) or single CTCs (F). The bars represent the percentage of genes detected per GO and pathway term with p % 0.05.

See also Figure S1 and Tables S1 and S2.
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Figure 2. CTC Cluster Hypomethylated Regions Are Associated with a Poor Prognosis in Breast Cancer Patients

(A) Percentage of DNA methylation (mean beta values) of overlapping probes identified in the TCGA breast cancer patient dataset. Patients are grouped in four

quantiles Q1-Q4, depending on the mean DNA methylation percentage of CTC cluster hypomethylated regions.

(B) Kaplan-Meier curve showing progression-free survival of breast cancer patients with overlapping probes in quantiles Q1 versus Q4 (top). The number of

patients that progressed at each time point is shown (bottom).

See also Figure S2.
no correlation with PFS is observed for those regions that are hy-

pomethylated in single CTCs (Figures S2C–S2F). Of note, while

the majority of breast cancer patients in both quantile Q1 and

Q4 belong to the hormone receptor-positive subtype (ER+/

PR+), the proportion of patients with the HER2-positive subtype

is significantly lower in quantile Q1 compared to quantile Q4 for

both CTC cluster- and single CTC-associated hypomethylated

regions (Figures S2G–S2J).

Together, our patient PFS analysis revealed that CTC cluster-

associated hypomethylated regions are also hypomethylated at

the level of the primary tumor in a subset of breast cancer pa-

tients characterized by a poor prognosis, compared to patients

that display higher methylation levels in the same regions.

Proliferation-Related Genes Are Enriched in CTC
Clusters
Our DNA methylation analysis led us to hypothesize that CTC

clusters are characterized by active TF networks that support

both stemness and proliferation. To identify whether the stem-

ness- and proliferation-related TF networks are also transcrip-

tionally active in CTC clusters compared to single CTCs, we

performed single-cell resolution RNA sequencing analysis of

48 single CTCs and 24 CTC clusters, matched within individual

liquid biopsies and isolated from six breast cancer patients

with progressive metastatic disease, and of 49 single CTCs

and 54 CTC clusters isolated from three xenograft models (Fig-

ures S3A andS3B; Tables S1 andS3). First, we performed a tran-

scriptome-wide weighted gene co-expression network analysis

(WGCNA) and identified 32 co-expression modules, revealing

gene groups that are co-enriched in either single CTCs or CTC

clusters (Figure 3A). Particularly, with this approach we identified

two co-expression modules, containing total of 1,976 genes, en-

riched in patient-derived CTC clusters (p < 0.02; n = 1,544 for

red; n = 432 for pink expression modules), while no co-expres-

sion modules were found to be significantly enriched in single

CTCs (Figure 3B; Table S4). Gene ontology (GO) network anal-
ysis of the red and pink modules revealed an enrichment of

gene groups related to cell-cell junctions, cellular proliferation,

and platelet activation among others (Figure 3C). We then

repeated the same analysis with xenograft-derived CTCs. Tran-

scriptome-wide WGCNA identified 21 co-expression modules

(Figure 3D), of which four significantly enriched in xenograft-

derived CTC clusters and containing a total of 8,332 genes

(p < 0.003; n = 159 for magenta, n = 337 for green, n = 753 for

yellow, and n = 7,083 for turquoise expression modules), and

three significantly enriched in xenograft-derived single CTCs

and containing a total of 294 genes (p < 0.005; n = 202 for

gray, n = 41 for dark turquoise, and n = 51 for dark red) (Figure 3E;

Table S4). GO network analysis of the xenograft-derived CTC

cluster networks revealed an enrichment of genes related to

cell proliferation, DNA replication, cell-cell adhesion, and meta-

bolic processes, among others (Figure 3F). In contrast, GO

network analysis of the xenograft-derived single CTCs networks

pointed to different processes that included RNA splicing, ATP

metabolism, and ER stress response (Figure S3C). When specif-

ically asking which processes were commonly found enriched in

CTC clusters from both patients and xenografts, we identified

genes related to both cellular proliferation and cell-cell adhesion

(Figure 3G). While we previously reported upregulation of cell-

cell adhesion components in CTC clusters (Aceto et al., 2014),

whether cells within CTC clusters are also more proliferative

compared to single CTCs is poorly understood. To directly

address this point and validate our RNA sequencing findings,

we stained CTCs from both patients and xenografts with the pro-

liferation marker Ki67 and found that the percentage of Ki67-

positive cells is indeed greatly increased in CTC clusters

compared to matched single CTCs (Figures S3D–S3G).

In summary, our transcriptome-wide WGCNA revealed that

CTC clusters—additionally to upregulating cell-cell junction

components—are also characterized by a higher proliferation

rate compared to single CTCs, in line with our DNA methylation

results.
Cell 176, 98–112, January 10, 2019 101



Figure 3. RNA Sequencing Analysis of Single CTCs and CTC Clusters from Breast Cancer Patients and Xenografts

(A) Weighted gene co-expression network analysis (WGCNA) in patient-derived single CTCs and CTC clusters, showing a hierarchical clustering tree of co-

expression modules. Each module corresponds to a branch, which is labeled by a distinct color shown underneath.

(B) WGCNA identifies 32 modules with highly correlated gene expression patterns in patient-derived single CTCs and CTC clusters. Correlations between each

module and CTC clusters or single CTCs are indicated by the intensity of red or green color, respectively. p value for each module is shown in brackets.

(C) GO term analysis of transcripts enriched in the red and pink expression modules of patient-derived CTC clusters.

(D) WGCNA in xenograft-derived single CTCs and CTC clusters, showing a hierarchical clustering tree of co-expression modules. Eachmodule corresponds to a

branch, labeled by a distinct color shown underneath.

(E) WGCNA identifies 21modules with highly correlated gene expression patterns in xenograft-derived single CTCs andCTC clusters. Correlations between each

module and CTC clusters or single CTCs are indicated by the intensity of red or green color, respectively. p value for each module is shown in brackets.

(F) GO term analysis of transcripts enriched in the magenta, green, yellow, and turquoise expression modules of xenograft-derived CTC clusters.

(G) Venn diagram showing the overlap of GO terms enriched in CTC clusters from patients and xenografts.

See also Figure S3 and Tables S3 and S4.
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Figure 4. Stemness-Related Gene Expression Analysis of Single CTCs and CTC Clusters from Breast Cancer Patients and Xenografts

(A) WGCNA of 302 stemness-related transcripts in patient-derived single CTCs and CTC clusters, showing a hierarchical clustering tree of co-expression

modules. Each module corresponds to a branch, which is labeled by a distinct color shown underneath.

(B) WGCNA identifies four modules with highly correlated gene expression patterns in patient-derived single CTCs and CTC clusters. Correlations between each

module and CTC clusters or single CTCs are indicated by the intensity of red or green color, respectively. p value for each module is shown in brackets.

(C) GO network analysis of patient-derived transcripts identified in the CTC cluster-associated blue and gray modules using iRegulon. The node size indicates

significance (p < 0.05), and color intensity corresponds to the percentage of genes that are associated to each GO category. Indicative GO categories are shown.

(D) GO term analysis of transcripts enriched in the blue and gray modules of patient-derived CTC clusters.

(E) Patient-derived CTC cluster-associated blue and gray module gene regulatory network analysis showing putative transcription factor dependence on SIN3A,

OCT4, and CBFB (green octagons).

(F) WGCNA of 302 stemness-related transcripts in xenograft-derived single CTCs and CTC clusters, showing a hierarchical clustering tree of co-expression

modules. Each module corresponds to a branch, labeled by a distinct color shown underneath.

(G) WGCNA identifies four modules with highly correlated gene expression patterns in xenograft-derived single CTCs and CTC clusters. Correlations between

each module and CTC clusters or single CTCs are indicated by the intensity of red or green color, respectively. p value for each module is shown in brackets.

(legend continued on next page)
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Stem-Cell-Related Genes Are Enriched in CTC Clusters
Our transcriptome-wide analysis revealed that the most signifi-

cant differences between single and clustered CTCs involve

the expression of cell-cell junction components and cell cycle

progression. Yet our DNA methylation analysis pointed to both

proliferation- and stemness-related TF networks being acces-

sible in CTC clusters. To specifically ask whether CTC clusters

would differ from single CTCs also in regard to the expression

of stemness-related genes (which may be regulated with more

subtle expression changes compared to cell cycle- and cell-

cell junction-related genes), we focused our analysis on 335

genes that were previously shown to be consistently upregulated

in mouse and human embryonic stem cells and embryonal car-

cinoma cells, as opposed to their differentiated counterparts

(Wong et al., 2008), and asked whether they are co-enriched in

CTC clusters. First, a subset of 302 of these 335 genes were

found to be expressed in our CTC samples from breast cancer

patients (cutoff R 3 transcripts per million). WGCNA with these

genes identified four expression modules co-enriched in either

single CTCs or CTC clusters. Particularly, we identified two co-

expression modules, containing a total of 85 genes, enriched

in patient-derived CTC clusters (n = 66 for blue; n = 19 for gray

expression module) and in two co-expression modules, contain-

ing 217 genes, enriched in patient-derived single CTCs (n = 156

for turquoise; n = 61 for brown) (Figures 4A and 4B; Table S4). GO

network analysis of these modules confirmed that CTC clusters

co-express stemness-related genes interconnected to cellular

proliferation, while single CTCs co-express genes more related

to metabolic processes (Figures 4C, 4D, and S4A; Table S4).

Importantly, TF target gene analysis (Janky et al., 2014) of CTC

cluster-enriched genes confirmed, among others, activity of

SIN3A and OCT4, in line with our DNA methylation findings (Fig-

ure 4E; Table S5). We then extended our analysis of the 302

stemness-related genes to xenograft-derived CTCs. In this

case, WGCNA revealed four expression modules, of which two

were found to be enriched in xenograft-derived CTC clusters

and containing a total of 153 genes (n = 151 for green; n = 2

for yellow expression module) (Figures 4F and 4G; Table S4), in

high concordance (85% overlap) with patient-derived modules

enriched in CTC clusters (Figure 4H; Table S4). TF target gene

analysis of those genes that are enriched in xenograft CTC clus-

ters also revealed the activity of several stemness- and prolifer-

ation-related TFs, including SIN3A, OCT4, NANOG, and SOX2

(Figure 4I; Table S5). Interestingly, the majority of these genes

also displays hypomethylated promoter regions in CTC clusters

compared to single CTCs (Figures S4B and S4C). Co-expression

modules found in single CTCs from patients and xenografts also

displayed significant overlap between each other (56.7%) (Fig-

ure S4D; Table S4), and TF analysis revealed the activity of

MYF6 and ASCL1, also displaying hypomethylated binding sites

in single CTCs (Figure S4E; Table S5).

Altogether, our gene expression data both at the transcrip-

tome-wide level and also focused on stem cell-related genes
(H) Venn diagram showing the overlap of CTC cluster-enriched transcripts betwee

(I) Xenograft-derived CTC cluster-associated green and yellow module gene reg

SIN3A, OCT4, NANOG, BHLHE40, RORA, and FOXO1 (green octagons) and on

See also Figure S4 and Tables S4 and S5.
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strongly supports the model proposed with the DNAmethylation

analysis, suggesting that when compared to single CTCs, CTC

clusters are endowed with a stemness- and proliferation-related

network centered on the activity of key transcription factors

including OCT4, SOX2, NANOG, and SIN3A. Activation of these

programs may play a pivotal role in determining the metastasis-

seeding ability of CTC clusters.

Identification of FDA-Approved Cluster-Targeting
Agents
Next, we sought to identify actionable vulnerabilities of CTC

clusters, and to test whether the epigenetic and transcriptional

features of clustered CTCs are reversible upon cluster dissocia-

tion into single cells. To this end, we evaluated 2,486 FDA-

approved compounds (Table S6) for their ability to dissociate

clusters of human breast CTC-derived cells obtained from two

patients with breast cancer (BR16 and BRx50), without affecting

cellular viability. Cluster dissociation was assessed using an im-

age-based high-content screening system and comparing CTCs

treated with individual compounds to untreated CTCs as well as

40-mm-filtered single-cell suspension as negative and positive

controls, respectively (Figures 5A, S5A, and S5B). For the major-

ity of the 2,486 FDA-approved compounds, we observed no

detectable reduction in cell viability (>70% viability) or in the

mean CTC cluster size (> 450 mm2) of CTC-derived cells upon

treatment (gray circles; Figure 5B). Yet we identified 39 com-

pounds that significantly (p < 0.0001) reduced mean CTC cluster

size without compromising viability (orange circles; Figure 5B).

These compounds include inhibitors of Na+/K+ ATPase (n = 6),

histone deacetylase (HDAC) (n = 2), nucleotide biosynthesis

(n = 5), kinases (n = 3), GPCRs (n = 2), cholesterol biosynthesis

(n = 1), nuclear export (n = 1), tubulin (n = 10), DNA binding com-

pounds (n = 8), and antibiotics (n = 1) (Figures 5B and S5C).

Importantly, reducing compound concentration resulted in a

gradual increase in mean CTC cluster size in both CTC-derived

cell lines, followed by an increase in the number of nuclei de-

tected, and a slight improvement in mitochondrial membrane

potential and overall viability (Figures 5C and S5D). Under these

conditions, six compounds consistently led to a significant

decrease in mean CTC cluster size for both CTC-derived cell

lines, even at the lowest concentrations tested. These com-

pounds display similar functions and can be grouped into two

families based on their mechanism of action, namely the Na+/

K+-ATPase inhibitors digitoxin and ouabain octahydrate and

the tubulin binding agents rigosertib, podofilox, colchicine, and

vincristine sulfate (Figures 5C, S5C, and S5D).

Dissociation of CTC Clusters Leads to DNA Methylation
Remodeling of Key Sites
To assess whether CTC cluster dissociation into single cells

would lead to DNA methylation remodeling, we treated four

CTC-derived cell lines with the six CTC cluster-dissociating

compounds individually. We found that a prolonged treatment
n patients (blue and gray modules) and xenograft (yellow and green modules).

ulatory network analysis showing putative transcription factor dependence on

SOX2 (orange circle).



M
ea

n 
C

TC
 c

lu
st

er
si

ze
(a

re
a 
μm

2 )

Na+/K-+
ATPase Inh Tubulin Binding HDACi Nucleotide

Biosynthesis DNA Binding Kinase Inh
GPCRi

Anti
bio

tic

Nuc
l E

xp
 In

h

1 μM

Cho
l B

ios
yn

the
sis

5 μM

0.5 μM
0.1 μM

0.1 μM
0.5 μM

1 μM
5 μM 2000

4000

6000

3000

4000

5000

Ace
tyl

-L-
Le

uc
ine

Ane
tho

le

Bisa
co

dy
l

Digi
tox

in

La
na

tos
ide

 C

Oua
ba

in 
Octa

hy
dra

te

Pod
ofi

lox

Colc
hic

ine

Fen
be

nd
az

ole

Vinc
ris

tin
e S

ulf
ate

2-M
eth

ox
ye

str
ad

iol

Epo
thi

lon
e B

Oxib
en

da
zo

le

Albe
nd

az
ole

Pac
lita

xe
l

Vori
no

sta
t

Prac
ino

sta
t

Amino
pte

rin

Meth
otr

ex
ate

Fluo
rou

rac
il

Oxa
lip

lat
in

Myc
op

he
no

lat
e M

ofe
til

Carb
op

lat
in

Ned
ap

lat
in

Hom
idi

um
 B

rom
ide

Prof
lav

ine
 H

em
isu

lfa
te

Mec
hlo

ret
ha

mine

Arte
nim

ol

Chlo
ram

bu
cil

Acri
fla

vin
ium

 H
CL

Vola
se

rtib
 

Rigo
se

rtib
 

Ly
27

84
54

4

Men
ate

tre
no

ne

Moz
av

ap
tan

Rim
on

ab
an

t

Sim
va

sta
tin

KPT-3
30

Mox
iflo

xa
cin

 H
CL

75
80
85
90

%
Vi

ab
ilit

y
TM

R
M

# 
N

uc
le

i

C

U
nf

ilt
er

ed
Cluster Analysis

Fi
lte

re
d

A

50 μm

No FDA
Filtered

1000

450

300

600

800

Hoechst/TMRM

Unfiltered Filtered

%
Vi

ab
ilit

y

Unfiltered Filtered
100

1000

250

500

Si
ze

 (a
re

a 
μm

2 )
M

ea
n 

C
TC

 c
lu

st
er

***

NS

70

80

90

100

FDA Compound (n=2447)

No FDA Compound (n=4)
No FDA & Filtered (n=4)

CTC cluster Size reducing
FDA Compound (n=39)

B

0 50 10070 90

1000

450

2000

300

200

M
ea

n 
C

TC
 c

lu
st

er
 s

iz
e 

(a
re

a 
μm

2 )

% Viability

 0 μM

0.1 μM
0.5 μM

1 μM
5 μM

 0 μM

0.1 μM
0.5 μM

1 μM
5 μM

 0 μM

(legend on next page)

Cell 176, 98–112, January 10, 2019 105



(17 days) with 20 nM digitoxin or ouabain was unique in ensuring

the highest degree of CTC cluster dissociation while allowing

high viability and optimal proliferation rates comparable to un-

treated control cells (Figure S6A). Of note, the treatment period

of 17 days was chosen to allow all cells (treated and untreated)

to double at least 5 times and therefore enabling DNA methyl-

ation remodeling events to occur. Upon treatment, we pro-

cessed BR16 and Brx50 cells for WGBS and RNA sequencing

analysis to assess the molecular consequences of clusters

dissociation. First, WGBS analysis revealed that the treatment

did not affect global DNA methylation levels (data not shown).

Yet a number of DMRs that were hypomethylated in CTC clus-

ters gained methylation upon treatment (Figures S6B and

S6C). Within the CTC cluster regions that gained methylation,

i-cisTarget analysis showed enrichment for binding sites of

stemness-related TFs, such as OCT4, SOX2, and NANOG, and

for SIN3A, among others (Figure 6A). Simultaneously, RNA

expression analysis upon treatment with digitoxin or ouabain re-

vealed a high concordance between the expression changes of

stemness-related genes that were enriched in patient- and xeno-

graft-derived CTC clusters (r = 0.69; p < 2.22�16; Figures 6B),

with the majority of these genes being downregulated as a

consequence of the treatment (p < 0.002; Figure 6B). TF analysis

revealed that downregulated genes were targets of OCT4,

NANOG, SOX2, and SIN3A transcription factors, among others

(Figure 6C). In contrast, TF analysis of those genes that were

upregulated as a consequence to CTC cluster dissociation

highlighted target genes of other TFs, independent from a core

pluripotency network (Kim et al., 2008) (Figure S6D). Thus,

CTC cluster dissociation into single cells with ouabain and

digitoxin leads to DNA methylation remodeling and gain in

methylation of critical binding sites for OCT4, SOX2, NANOG,

and SIN3A, paralleled by downregulation of their corresponding

target genes.

Inhibition of the Na+/K+ ATPase using ouabain and intracellular

increase of calcium levels have been previously shown to nega-

tively affect the formation of tight junctions and desmosomes in

epithelial cells (Nigam et al., 1992; Rajasekaran et al., 2001; Stu-

art et al., 1994). Here, to gain more insights into the mechanism

of action of Na+/K+ ATPase inhibitors in the context of CTC clus-

ters disruption, we tested whether the suppression of ATP pro-

duction and consequently, an increase in intracellular calcium

levels—using the proton uncouplers FCCP and CCCP (De-

maurex et al., 2009)—would also dissociate CTC clusters. Our

results show that treatment of CTC-derived cells with increasing
Figure 5. Screen for FDA-Approved Compounds that Dissociate CTC C

(A) Representative images of unfiltered and filtered BR16CTC-derived cells staine

and clustered CTCs outline based on nuclei proximity as determined using the C

size (area in micrometers squared) and percentage (%) of viability of unfiltered ver

(bottom).

(B) Effect of a 2-day treatment of BR16 cells with 2,486 FDA-approved compound

squared) versus percentage (%) of viability (n = 2). Thirty-nine FDA-approved com

(p < 0.0001, F value = 7.71; DF = 38 using one-way ANOVA test; horizontal dashe

BR16 cells that were untreated (red) or 40 mm filtered (green) are shown as contr

(C) The plot shows the mean CTC cluster size of BR16 cells treated with each of th

that were untreated (red) or 40 mm filtered (green) are shown as controls (top p

percentage (%) of viability of BR16 cells treated with cluster-targeting compoun

See also Figure S5 and Table S6.
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concentrations of FCCP and CCCP for 18 hr leads to a gradual

decrease of mean cluster size (Figure 6D), paralleled by a signif-

icant increase in intracellular Ca2+ levels (Figure 6D). Interest-

ingly, a similar gradual increase in intracellular Ca2+ is also

observed when treating with increasing concentrations of digi-

toxin and ouabain (Figure S6E). These results support a model

whereby intracellular Ca2+ increase leads to the inability of can-

cer cells to properly form cell-cell junctions.

To further confirm this model, we assessed whether cell-cell

junction disruption in CTC-derived cells would lead to clusters

dissociation as well as DNAmethylation remodeling at CTC clus-

ter-associated DMRs. To this end, we employed the CRISPR

technology to simultaneously knockout both claudin 3 (CLDN3)

and claudin 4 (CLDN4) in BR16 CTC-derived cells, two of the

highest-expressed tight junction proteins in CTC clusters (Table

S4). Using two independent sgRNAs for each gene, we gener-

ated three BR16 lines with double CLDN3/4 knockout, which

also displayed a significant reduction of mean CTC cluster size

(Figures S6F and S6G). Whole-genome bisulfite sequencing of

the CLDN3/4 double-knockout cells showed that, upon dissoci-

ation into single cells and similarly to the events that occurred

upon Na+/K+ ATPase inhibition, a number of CTC cluster-associ-

ated hypomethylated regions gained methylation (Figure 6E).

Interestingly, i-cisTarget analysis of the regions that gained

higher levels of methylation revealed an enrichment of binding

sites for OCT4, SOX2, NANOG, and SIN3A (Figure 6F), further

indicating that CTC clustering directly affects DNA methylation

dynamics at bindings sites for stemness- and proliferation-asso-

ciated TFs.

Together, our results indicate that Na+/K+ ATPase inhibition

leads to CTC clusters dissociation through the increase of the

intracellular Ca2+ concentration and the consequent inhibition

of cell-cell junction formation, resulting in DNA methylation re-

modeling at critical stemness- and proliferation-related bind-

ing sites.

Treatment with Na+/K+-ATPase Inhibitors Suppresses
Spontaneous Metastasis Formation
To test whether ouabain and digitoxin would also enable CTC

clusters disruption in vivo, we took a dual approach. First, we

tested whether a 17-day in vitro treatment with ouabain and digi-

toxin would translate into a reduced ability of the treated cells to

efficiently seed metastasis in untreated mice (Figure 7A). To this

end, upon treatment, BR16 cells stably expressing GFP-lucif-

erase were injected into the tail vein of NSG mice and
lusters

dwith Hoechst (blue) and TMRM (orange) (left). Representative images of single

olombus Image Analysis System (right). The plots show the mean CTC cluster

sus filtered BR16 cells (n = 4; ***p < 0.001 by Student’s t test; ns, not significant)

s at 5 mMconcentration, plotted as mean CTC cluster size (area in micrometers

pounds (orange circles) result in significant decrease in mean CTC cluster size

d red line, < 450 mm2) and > 70% detectable viability (vertical-dashed red line).

ols.

e 39 cluster-targeting compounds at four different concentrations. BR16 cells

anel). The heatmap shows the number of nuclei, mean TMRM intensity, and

ds at the indicated concentrations (bottom). n = 2. Error bars represent SEM.
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(F) i-cisTarget analysis of CTC cluster hypomethylated regions, showingR 40%methylation increase upon CLDN3/4 double knockout in BR16 cells. Shown are

enriched TFBSs (NES R 3).

See also Figure S6 and Tables S2, S3, and S7.
noninvasively monitored through luminescence imaging for their

ability to seed and propagate metastatic lesions. We found that

while the treatment with digitoxin or ouabain did not affect the
ability of BR16 cells to lodge in the lung tissue immediately after

injection (see ‘‘day 0’’; Figure 7B), it led to a reduced ability to

survive during the first day upon arrival, as confirmed by a
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Figure 7. Treatment with Na+/K+ ATPase Inhibitors Suppresses Spontaneous Metastasis Formation

(A) Schematic representation of the experiment.

(B) The plots show the total bioluminescence flux at day 0 (left) and day 1 (right) upon tail vein injection of BR16 cells pre-treated with 20 nM digitoxin or ouabain.

n = 5 for controls and ouabain, n = 4 for digitoxin; *p < 0.05 by Student’s t test. ns, not significant. Error bars represent SEM.

(C) Metastasis growth curve over 72 days upon tail vein injection of BR16 cells pre-treatedwith 20 nMdigitoxin or ouabain. n = 5; *p < 0.05; **p < 0.01 by Student’s

t test. Error bars represent SEM.

(D) Schematic representation of the experiment.

(E) The plots show the percentage (%) of spontaneously generated single CTCs and CTC clusters detected in the blood of BR16 xenografts treated with ouabain.

n = 5; ***p < 0.001 by Student’s t test. error bars represent SEM.

(F) The plot shows the metastatic index of BR16 xenografts treated with ouabain. n = 11 for controls, n = 5 for ouabain; **p < 0.01 by Student’s t test. Error bars

represent SEM.

(G) Representative images of the bioluminescence signal measured in brain and in liver of control and ouabain-treated NSG mice.

See also Figure S7.
significant increase in the expression of cleaved caspase 3

compared to control cells (see ‘‘day 1’’; Figures 7B, S7A, and

S7B). Overall, this difference in the ability to survive during the

very early steps of metastasis seeding resulted in a delayedmet-

astatic outgrowth despite the absence of further treatment

in vivo, as measured during the course of 72 days upon injection

(Figure 7C).

Second, mimicking more closely the clinical setting, to assess

the effect of our CTC cluster-dissociation strategy for the spon-

taneous formation of CTC clusters and metastasis from a pri-

mary tumor, we injected BR16 cells in the mammary fat pad of

NSG mice. Fourteen weeks after primary tumor formation we
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administered ouabain daily for three weeks and assessed CTC

composition and the occurrence of spontaneous metastatic le-

sions (Figure 7D). Importantly, we observed that ouabain treat-

ment reduced the frequency of spontaneously generated CTC

clusters while increasing the frequency of single CTCs (Fig-

ure 7E), without altering the size of the primary tumor nor overall

CTC numbers (Figures S7C and S7D). Along with a reduction in

the frequency of CTC clusters, ouabain treatment also resulted in

a remarkable suppression (80.7-fold) of the total metastatic

burden (Figures 7F and 7G). In a similar fashion, when adminis-

tering ouabain treatment to NSG mice carrying spontaneously

metastasizing LM2 tumors, we also observed an increase in



the proportion of single CTCs and a decrease in CTC clusters

(Figure S7E), without any change in the primary tumor size nor

overall CTC numbers (Figures S7F and S7G), leading to a

reduced metastatic burden compared to control (Figure S7H).

Together, these results demonstrate that Na+/K+ ATPase inhi-

bition in vivo suppresses the ability of a cancerous lesion to

spontaneously shed CTC clusters, leading to a remarkable

reduction in metastasis seeding ability.

DISCUSSION

Our study provides a comprehensive genome-wide analysis of

the DNA-methylation events that characterize CTCs in patients

and xenografts. Surprisingly, we find that phenotypic differ-

ences—such as the ability of CTCs to navigate through the

bloodstream as single cells or multicellular clusters—shape the

DNA methylome. Clustering of CTCs results in hypomethylation

of binding sites that are typically occupied by master stemness

and proliferation regulators, including OCT4, NANOG, SOX2,

and SIN3A, and hypermethylation of Polycomb target genes.

More globally, we also find that the DNA methylation profile of

CTC clusters is detected at the level of the primary tumor in a

subset of breast cancers that are characterized by a poor prog-

nosis. CTC clusters dissociation into single cells with Na+/K+

ATPase inhibitors or through cell-cell junction knockdown en-

ables DNA methylation remodeling at critical sites, highlighting

a direct connection between clustering and methylation status.

As a result, Na+/K+ ATPase inhibitors treatment emerges as a

new strategy to significantly reduce the spread of cancer,

providing a rationale for using these compounds in clinical

studies.

Our results suggest that CTC clusters may share several prop-

erties that commonly feature stem cell biology. For instance,

OCT4, NANOG, SOX2, and SIN3A are predominantly active in

embryonic stem cells (ESCs), simultaneously regulating self-

renewal and proliferation (Kim et al., 2008; McDonel et al.,

2012; Niwa, 2007; van den Berg et al., 2010). In addition, ESCs

rely on Polycomb-mediated repression of differentiation genes

and chromatin remodeling to maintain their active pluripotency

network (Lee et al., 2006). Cell-cell junction activity has been

shown in several instances to safeguard pluripotency and to

be required for a complete reprogramming of somatic cells

into stem cells, and disruption of cell-cell junctions (e.g., through

targeting of E-cadherin) in human ESC results into OCT4,

NANOG, and SOX2 downregulation along the loss of stemness

features (Li et al., 2010a, 2010b, 2012; Pieters and van Roy,

2014). Thus, by analogy with stem cell biology, elevated expres-

sion of cell-cell junction components in cancer cells may not only

enable their intravasation in the bloodstream as multicellular

clusters but also their ability to retain stem-like features that facil-

itate metastasis initiation.

Identifying FDA-approved compounds that dissociate CTC

clusters provides a new tool to reduce the spread of cancer.

Our results demonstrate that CTC clusters disruption into single

cells via the inhibition of the Na+/K+ ATPase has a dual, yet inter-

connected effect. The fact that clusters dissociation leads to

DNA methylation remodeling at critical sites provides a direct

link between a phenotypic state of the cells (i.e., clustered versus
single) and DNA methylation dynamics. Second, CTC clusters

disruption increases the proportion of single CTCs in the blood-

stream but suppresses overall metastasis formation, indicating

that targeting CTC clusters could be a valuable therapeutic strat-

egy. In this regard, while we cannot exclude that an anti-cluster

treatment might be beneficial also at the late disease stages in

those patients whose metastasis may seed other metastases

(McPherson et al., 2016; Reiter et al., 2017; Zhang et al., 2017),

in vivo data suggest that treatment with ouabain and digitoxin

should be administered early, ideally at the time of localized dis-

ease and before dissemination to distant sites, with the objective

to prevent CTC cluster formation.

Ouabain and digitoxin are cardiac glycosides with a similar

chemical structure, used in low doses for the treatment of

hypotension and cardiac arrhythmias, acting through nonselec-

tive inhibition of the Na+/K+ ATPase (Altamirano et al., 2006;

Schwartz, 1976). Upon inhibition of the Na+/K+ ATPase, cellular

uptake of Na+ occurs, leading to a simultaneous increase in

intracellular Ca2+ and impaired translocation of desmosomal

and tight junction proteins to the cellular membrane (Altamirano

et al., 2006; Arispe et al., 2008). Based on this, our experi-

mental evidences support a model whereby pharmacological

inhibition of the Na+/K+ ATPase either directly or indirectly

(i.e., by depletion of available ATP) leads to a concomitant in-

crease in intracellular Ca2+ levels and CTC cluster disruption

through suppression of functional cell-cell junction assembly

(Cavey and Lecuit, 2009; Kim et al., 2011).

Together, our study provides key insights into the biology of

CTCs and highlights a fundamental connection between

phenotypic features of CTCs (such as their ability to circulate

as multicellular clusters) and DNA methylation dynamics at

critical stemness- and proliferation-related sites. Further, we

identify the Na+/K+ ATPase inhibitors ouabain and digitoxin

as FDA-approved agents capable to dissociate CTC clusters

into single cells and to suppress spontaneous metastasis for-

mation in xenograft models, providing a rationale for applying

these compounds for the treatment of patients with breast

cancer.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human blood samples collection
Blood specimens for CTC analysis were obtained from the University Hospital Basel after informed patient consent, according to

protocols EKNZ BASEC 2016-00067 and EK 321/10, which received ethical approval from the Swiss authorities (EKNZ, Ethics Com-

mittee northwest/central Switzerland).

Mouse blood samples collection
For mouse studies, blood was retrieved via cardiac puncture and up to 1 mL of blood was collected. All mouse experiments were

carried out in compliance with institutional and cantonal guidelines (approved mouse protocol #2781, cantonal veterinary office of

Basel-City).

Cell lines
BR16 CTC-derived cells were generated from a patient with metastatic breast cancer at the University Hospital Basel as previously

described (Yu et al., 2014). Brx50, Brx07 and Brx68 CTC-derived cells were obtained from the Haber and Maheswaran lab (MGH

Cancer Center, Harvard Medical School, Boston, MA). MDA-MB-231 (LM2) cells were donated from Joan Massague’s lab (MSKCC,

New York, NY, USA).

METHOD DETAILS

Cell Culture
CTC-derived cells were maintained under hypoxic conditions (5% oxygen) on ultra-low attachment (ULA) 6-well plates (Corning,

Cat# 3471-COR). CTC growth medium containing 20 ng/ml recombinant human Epidermal Growth Factor (GIBCO,

Cat# PHG0313), 20 ng/ml recombinant human Fibroblast Growth Factor (GIBCO, Cat#100-18B), 1x B27 supplement (Invitrogen,

Cat#17504-044) and 1x Antibiotic-Antimycotic (Invitrogen, Cat# 15240062) in RPMI 1640 Medium (Invitrogen, Cat# 52400-025)

was added every third day. For passaging, cells were spun down at 800 g for 5 min using a Heraeus Multifuge X3R centrifuge
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(Invitrogen, Cat#75004515). The supernatant was subsequently aspirated and cells were resuspended in 2 ml/well CTCmedium and

plated in 6-well ULA plates. LM2 cells were passaged in DMEM/F-12 medium (Invitrogen, Cat#11330057) supplemented with 10%

FBS (Invitrogen, Cat# 10500064) and Antibiotic-Antimycotic (Invitrogen, Cat# 15240062). For passaging, LM2 cells were washed

once with D-PBS (Invitrogen, Cat#14190169) and dissociated using 0.25% Trypsin (Invitrogen, Cat#25200056).

CTC Capture and Identification
An average of 7.5 mL of blood per patient or up to 1 mL per mouse was drawn in EDTA vacutainers. Within 1 hr from blood draw, the

blood was processed through a Parsortix GEN3D6.5 Cell Separation Cassette (Angle Europe) according to the manufacturer’s in-

structions. Captured CTCs were further stained on the Parsortix cassette with EpCAM-AF488 (CellSignaling, Cat# CST5198),

HER2-AF488 (#324410, BioLegend), EGFR-FITC (GeneTex, Cat# GTX11400) and CD45-BV605 (Biolegend, Cat# 304042 (anti-hu-

man); Cat# 103140 (anti-mouse)) antibodies or imaged directly for GFP.

Tumorigenesis Assays
For tail vein experiments, NOD SCID Gamma (NSG) mice (Jackson Labs) were injected with 7x105 BR16-mCherry cells resuspended

in 100 mL D-PBS and monitored with IVIS Lumina II (Perkin Elmer). For xenografts, 1x106 LM2-GFP, 1x106 BRx50-GFP or 1x106

BR16-GFP cells were resuspended in 100 mL of 50% Cultrex PathClear Reduced Growth Factor Basement Membrane Extract

(R&D Biosystems, Cat# 3533-010-02) in D-PBS and injected orthotopically in NSGmice. Blood draw was performed 4-5 weeks after

tumor onset for LM2 cells, 5 months after tumor onset for BR16 and 6-7 months after tumor onset for BRx50 cells. For in vivo treat-

ment with ouabain, NSG mice were injected IP daily with 100 mL containing 0.67 mg/Kg ouabain diluted in PBS.

Immunofluorescence Staining
For immunofluorescence staining of CTCs, after Parsortix enrichment, CTCs were released in PBS and cytospinned for 3 min at

500 rpm on coated microscope slides (Thermo Scientific, Cat# 5991056), left to air dry for 5 min and then fixed with 4% PFA (Sigma;

Cat# 58127) for 12 min. For lung tissue, immunoflourescence was performed on 4 mm paraffin sections. Paraffin sections were de-

paraffinized prior to immersion in Tris-EDTA buffer (10 mM Tris base/1 mMEDTA/0.05% Tween20, pH 9.0) at 95�C for 40 minutes for

antigen retrieval. Slides were then washed twice in PBS and premeabilized with 5% Triton X-100 (Sigma) in PBS for 20 min, washed

once with 0.2% Tween in PBS and twice with PBS. Blocking was performed for 1 hour at room temperature in 10% horse serum

(Sigma, Cat# 2-05F00-I) followed by 2 times wash in PBS. Primary antibodies for Pan CytoKeratins (Abcam, Cat# ab190707),

Ki67 (Abcam; Cat# ab15580) and Cleaved Caspase-3 (Cell Signaling, Cat# 9664S) were added at 1:50, 1:60 and 1:100 dilutions,

respectively, in 0.5% BSA in PBS and incubated overnight at 4�C. The following day the slides were washed once with 5% horse

serum, 0.2% tween in PBS followed by one wash with PBS. Secondary antibodies anti mouse-AF488 (Invitrogen; Cat# A21202)

and anti-rabbit-AF647 (Invitrogen; Cat# A31573) were added at 1:200 dilution in 0.5% BSA in PBS for 30 min followed by three

washes with PBS. Finally, slides were incubated for 5 min with 10 mMDAPI in PBS (Sigma, Cat# D9542) and mounted using ProLong

Gold Antifade (Invitrogen; Cat# P36934).

FCCP, CCCP treatment and Intracellular Ca2+ measurement
FCCP (Abcam, Cat# ab120081) and CCCP (Abcam, Cat# ab141229) were reconstituted in DMSO at 100 mM concentration and

further diluted in CTC medium to the indicated concentrations. For Ca2+ measurements, Fluo-3 AM (cell permeant, Invitrogen;

Cat# F1241) was added to the 20’000 cells/well into a 96 well Black/clear Tissue culture treated plate (BD Falcon, Cat#353219) at

2 mM concentration together with 4 mM Hoechst 34580 (Invitrogen, Cat# H21486) and 4 mM TOTO-3 (Invitrogen, Cat# T3604) and

cells were incubated for 30 min at 37�C. Plates were scanned using Operetta High Content Imaging System (Perkin Elmer) and

Ca2+ bound Fluo-3 intensity per cell was calculated using Columbus Image Data Storage and Analysis System (Perkin Elmer).

CRISPR-CAS9 CLDN3/4 Double knock out in BR16
Weused lentiviral delivery of pLenti-Cas9-EGFP vector (Addgene) to generate a BR16CTC-derived cell line that stably expresses the

Cas9 protein together with GFP. In BR16-Cas9-GFP line we then introduced sgRNA sequences that target either CLDN3 or CLDN4.

In detail, sgRNA sequences were designed using the GPP Web Portal (https://portals.broadinstitute.org/gpp/public/analysis-tools/

sgrna-design). Two sgRNAs targeting CLDN3 ((sense) 50-CACGTCGCAGAACATCTGGG-30 and (sense) 50-ACGTCGCAGAACA

TCTGGGA-30) were cloned in vector pLentiGuide-Puro (Addgene) and 2 sgRNAs targeting CLDN4 ((sense) 50-CAAGGCCAAGAC

CATGATCG-30 and (sense) 50-ATGGGTGCCTCGCTCTACGT-30) were cloned in vector pLentiGuide-Blast. Vector pLentiGuide-Blast

was generated by replacing puromycin resistance gene on plasmid pLentiGuide-Puro with the blasticidin resistance gene using

the MluI and BsiWI restriction enzyme sites. Double positive-clones were selected based on puromycin (1 mg/ml) and blasticidin

(10 mg/ml) antibiotic selection for 2 weeks and CLDN3/CLDN4 knockout was verified by western blot.

Western Blot
Cells were pelleted at 800 rpm for 5 min and lysed in 1%SDS, 50 mM Tris pH7.8, 10 mM EDTA pH 8.0 and 0.1 M DTT in PBS with the

addition of protease inhibitors according to manufacturer’s instructions (Complete EDTA-free Protease Inhibitor Cocktail Tablets -

Roche; Cat#11873580001). Cell lysates were passed through a 27-G syringe to achieve homogeneous disruption and centrifuged
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at 10’000 rpm for 5 min at 4�C. The protein containing supernatant was transferred to a fresh tube. Protein concentration was deter-

mined using the DC Protein Assay Detection System (Biorad, Cat# 500-0114). The proteins were separated on a 12% SDS gel using

the Bolt system (Invitrogen) and transferred to a nitrocellulose membrane using the iBlot2 system (Invitrogen) according to manufac-

turer’s instructions. Membranes were blocked in 5%milk in PBS for 1 hour at room temperature and primary antibodies for the detec-

tion of CLDN3 (1:1000 dilution; Novus; Cat#NB100-91711), CLDN4 (1:200 dilution; Invitrogen; Cat# 32-9400) and GAPDH (1:1000

dilution; Cell Signaling; Cat# 2118S) were added for incubation overnight at 4�C. The next day membranes were washed 3 times

for 5 min in 0.2% tween in PBS. Secondary antibodies were added at 1:5000 dilution in 5%Milk in PBS and detection was performed

using the Odyssey imaging system (Li-Cor) all according to manufacturer’s instructions.

Single-Cell Micromanipulation
CTCswere harvested from the Parsortix cassette in 1mLD-PBS solution (Invitrogen, Cat#14190169) in a 6-well ultra-low attachment

plate (Corning, Cat# 3471-COR) and visualized using a CKX41 Olympus inverted fluorescent microscope (part of the AVISO

CellCelector Micromanipulator –ALS). Single CTCs and CTC clusters were identified based on intact cellular morphology, AF488/

FITC-positive staining and lack of BV605 staining. Target cells were individually micromanipulated with a 30 mm glass capillary on

the AVISO CellCelector micromanipulator (ALS) and deposited into individual PCR tubes (Axygen, Cat#321-032-501) containing

10 mL of 2x Digestion Buffer (EZ DNA Methylation Direct Kit -Zymo, Cat# D5020) for WGBS or 2 mL of RLT lysis buffer (QIAGEN,

Cat#79216) supplemented with 1U/ml SUPERase In RNase inhibitor (Invitrogen, Cat# AM2694) for RNA sequencing, and immediately

flash frozen in liquid nitrogen.

Single Cell Whole-genome Bisulfite Sequencing
Proteinase K digestion and bisulfite treatment was performed according to the manufacturer’s instructions for EZ DNA Methylation

Direct Kit (Zymo, Cat# D5020). Bisulfite-treated DNA was eluted using 9 mL of Elution Buffer and used for library generation with

TruSeq DNA methylation kit (Illumina, Cat# EGMK91396) according to manufacturer’s instructions. For amplification, 18 cycles

were performed using Failsafe Enzyme (Illumina, Cat# FSE51100) and indexes were introduced with Index Primers’ Kit (Illumina,

Cat# EGIDX81312). Library purification was performed using Agencourt AMPure XP beads at a ratio of 1:1 according to manufac-

turer’s instructions. To avoid DNA loss during pipetting steps, Corning DeckWork low binding barrier pipet tips were used (Sigma,

Cat# CLS4135-4X960EA). Library concentration was estimated using Qubit DS DNA HS Assay Kit according to manufacturer’s in-

structions (Invitrogen, Cat#Q32854).

RNA-Seq Library generation
RNA was captured on beads conjugated with oligo-dT primer according to a published protocol (Macaulay et al., 2016). cDNA was

generated according to the Smart-Seq 2 protocol (Picelli et al., 2014). Sequencing libraries were generated and indexed from 0.25 ng

of cDNA per sample using the Nextera XT DNA Library Preparation Kit (Illumina, Cat# FC-131-2001) according to manufacturer’s

instructions.

FDA-Approved Compound Screen
A library containing 2,486 FDA-approved compounds was obtained from the Nexus Platform – ETH Zurich. Each compound was

resuspended using CTC medium at a 15 mM concentration and 20 mL were aliquoted in duplicate in a total of 64 Flat Bottom Clear

Ultra Low attachment 96-well plates (Corning, Cat#3474). To obtain a single cell suspension from CTC-derived cells, a 40 mm cell

strainer was used (Corning, Cat# 431750). 40 mL containing 15,000 CTC-derived cells were seeded per well in 96-well ultra-low

attachment plates that contained 20 mL of pre-aliquoted FDA-approved compounds at 15 mM concentration, so that the final com-

pound concentration was 5 mM. Plates were incubated in hypoxic conditions (5% oxygen) for 2 days and then 20 mL were transferred

into a 96well Black/clear Tissue culture treated plate (BD Falcon, Cat#353219) containing 40 mL of D-PBS (Invitrogen, Cat#14190169)

and stained for 1hr at 37�C with a final concentration of 4 mM Hoechst 34580 (Invitrogen, Cat# H21486), 2 mM TMRM (Invitrogen,

Cat#T668) and 4 mMTOTO-3 (Invitrogen, Cat# T3604). For each plate, two negative controls (non-treated cells) and two positive con-

trols (40 mm-filtered cells) were included. Z-factors were calculated per individual plate using the following formula: Z0 = 1-3(ss + sc)/

jms-mcj (s: standard deviation, m: mean, s: positive control and c: negative control) (Martin et al., 2014) and ranged between 0.62-

0.937. Plates were scanned using Operetta High Content Imaging System (Perkin Elmer) and CTC cluster analysis was performed

using Columbus Image Data Storage and Analysis System (Perkin Elmer).

QUANTIFICATION AND STATISTICAL ANALYSIS

Whole Genome Bisulfite Data Processing
After sequencing, initial quality assessment of data was performed using FastQC (https://www.bioinformatics.babraham.ac.uk/

projects/fastqc). Adaptor sequences, low quality ends, first 9 base pairs from 50 end and 3 base pairs from 30 were removed with

Trim Galore (v0.4.2, http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/; parameters:–paired–retain_unpaired -r1

36 -r2 36–clip_r1 9–three_prime_clip_r1 3–clip_r2 9–three_prime_clip_r2 3–quality 20–phred33). Trimmed reads were aligned to

GRCh38 human genome using Bismark Bisulfite Mapper (v0.17.0; paramters:–non_directional–bowtie2) (Krueger and Andrews,
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2011) with the alignment tool Bowtie2 (v2.2.9) (Langmead and Salzberg, 2012). Reads with a conversion rate lower than 90% or less

than three non-converted cytosines in non-CpG context were removed. Finally, methylation calls were extracted after deduplication

using Bismark. Resulting data was processed using MethylKit (Akalin et al., 2012) (v1.4.0) to aggregate methylation values into

genomic tiling regions of 5 kilobases using a step size of 1kilobase normalizing coverage between samples. Annotation used for

metaplots of genes and CpG islands was performed using genomation toolkit in R/bioconductor package (Akalin et al., 2015).

Differential Methylation Analysis and Enrichment Analysis
Differential methylation at genomic tiles was assessed using Methylkit Chisq method to compare the fraction of methylated CpGs

in test and control conditions, and correcting for overdispersion. Tiles with at least 2 samples covered per group and with a

Q-value % 0.05 using the SLIM (Wang et al., 2011) method were considered as differentially methylated. The region set enrichment

analysis was performed following the example of Farlik et al. (2016). Normalized enrichment scores (NESs) of TBFSs in DMRs were

calculated using i-cisTarget (https://gbiomed.kuleuven.be/apps/lcb/i-cisTarget/) (Herrmann et al., 2012) using full motif analysis and

NES score threshold R 3. Gene ontology network analysis was generated using ClueGO (Vocci and London, 1997). LOLA (v1.8;

http://databio.org/regiondb) (Sheffield and Bock, 2016) was used to annotate themethylation data with a catalog of regulatory region

sets from Codex database and ENCODE.

Enrichment Analysis Based on Genomic Features
Individual CpGs were mapped to genes and their promoters using RefSeq genes annotation from the UCSC genome browser

(https://genome.ucsc.edu; date: 01/06/2018). Promoters were defined as ± 2 kb region around the transcription start site (TSS). Map-

ping to super-enhancer regions was based on dbSUPER (http://asntech.org/dbsuper/), an integrated database of super-enhancers

that provides a list of genes associated to each region. Genomic coordinates from dbSUPER were converted from GRCh37 to

GRCh38 via LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Each genomic feature was interrogated for differential methyl-

ation in the same fashion as we did for genomic tiles. Genes corresponding to genomic features with a nominal P value % 0.01

and an absolute methylation difference R 20% were considered for enrichment analysis using the gene set collection C2 from

the Molecular Signatures Database v6.1 (MSigDB). Gene set enrichment analysis was performed using hypergeometric test imple-

mented in the clusterProfiler R/bioconductor package. Gene-sets with an adjusted P value % 0.05 were considered significant.

Survival Analysis using TCGA DNA Methylation Data
A total of 789 primary breast cancer samples from TCGA were available from the Illumina HumanMethylation 450 (HM450K) array.

Level 3 data was downloaded from The National Cancer Institute (NCI) Genomic Data Commons (GDC) using the TCGAbiolinks bio-

conductor package (Colaprico et al., 2016). Downloaded data are b-values ranging from 0 to 1 and reflecting the fraction of meth-

ylated alleles at each CpG. Probes overlapping regions of the CTC cluster-associated DNA methylation signature were selected

for further analysis. A curated set of clinical parameters was obtained from the TCGA Pan-Cancer Clinical Data Resource (TCGA-

CDR) (Liu et al., 2018). For survival analysis, participants were divided into quartiles based on the average methylation across the

CTC cluster-associated DNA methylation signature loci and progression free survival (PFS) was used as an endpoint. The

Kaplan-Meier survival curves were drawn comparing the lowest (25%, Q1) versus the highest (75%, Q4) quartile and log-rank test

P value was calculated using the survival R package.

RNA-Seq Data Processing
Initial quality assessment for RNA-seq data was performed using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/

fastqc), FastQ Screen (https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen), and visualized with MultiQC (v0.8).

Adaptor sequences, first 9 bp and low quality ends were removed with Trim Galore (v0.4.2, http://www.bioinformatics.babraham.

ac.uk/projects/trim_galore/; parameters:–phred33–length 36–clip_R1 9). Trimmed reads were aligned to a combined human

(GRCh38) and mouse (GRCm38) genome reference using STAR (v 2.5.2a; parameters:–runMode alignReads–genomeLoad

LoadAndExit) (Dobin et al., 2013) in order to exclude potential contaminations in the xenograft models. Quality control of resulting

BAM files was performed with RSeQC (v2.6.4) (Wang et al., 2012). The gene-level expression counts were computed with feature-

Counts (v1.5.1) (Liao et al., 2014) using the gene annotations obtained from RefSeq (release 70). Samples with less than 800 features

detected (thresholdR 1mapped read) or showingmore than 5%of contamination from the other species were removed from further

analysis. To normalize gene counts for cell-specific biases in single-cell data, we used size factors computed using the deconvolution

strategy developed by Lun et al. (2016) and implemented in the scran (v1.6.5) package available on R/bioconductor (Huber et al.,

2015). RNA-seq data processing, quality control and visualization was performed with the help the R/bioconductor package scater

(v1.6.0). Gene regulatory network analysis to identify putative transcription factor dependence was generated using iRegulon (Janky

et al., 2014).

Weighted Gene Co-Expression Analysis
A signed co-expression network was constructed using Weighted Gene Correlation Network Analysis (WGCNA) R package (v1.61)

based on 335 genes from a well-established stem cell gene signature (Wong et al., 2008). The analysis was performed only on those

genes with a Fragments Per Kilobase Million (FPKM) value R 1 in at least three samples (n = 301). A soft-threshold power used to
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create the pairwise distance matrix was defined as the lowest power for which the scale-free topology fit index reaches 0.80. Dy-

namic tree cut was (dynamicTreeCut R-package, v1.63) used to defined modules of genes. The association between the modules

eigenvalues and CTC groupswas evaluated usingWilcoxon rank sum. Gene ontology network analysis was generated using ClueGO

(Vocci and London, 1997).

DATA AND SOFTWARE AVAILABILITY

Data Analysis and Data Availability
Data analysis, statistical test and visualization were conducted in R (version 3.4.0; R Foundation for Statistical Computing, Vienna,

Austria) and GraphPad Prism (v7.0). RNA sequencing data have been deposited to Gene Expression Omnibus (Edgar et al., 2002).

The accession number for the RNA sequencing data reported in this paper is GEO: GSE111065. Bisulfite sequencing data have been

deposited to the European Nucleotide Archive. The accession number for the bisulfite sequencing data reported in this paper is ENA:

PRJEB25101.
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Figure S1. Whole-Genome Bisulfite Sequencing of Single CTCs and CTC Clusters, Related to Figure 1

(A) CTC capture efficiency from blood spiked with BR16 or BRx50 single CTCs and CTC clusters, using the Parsortix device (n = 2 per cell line with 500 single

CTCs and 150 CTC clusters). Error bars represent SEM.

(B) 250 single BR16-GFP+ and 250 single BR16-RFP+ cells are spiked in blood and CTCs are enriched using the Parsortix device. Captured CTCs are of single

color, revealing no artificial cluster formation during processing (n = 2). Error bars represent SEM.

(C) Representative pictures of single CTCs and CTC clusters from breast cancer patients, enriched with the Parsortix microfluidic device and stained for EpCAM,

HER2 and EGFR (green). White blood cells (WBCs) are counterstained with CD45 (red).

(D and E) Bar graph showing the percent of CpG sites that are covered in individual CTC clusters and single CTCs from patients (D) and xenografts (E).

(F and G) Principal component analysis of patient-derived (F) and xenograft-derived (G) single CTCs and CTC clusters, based on all features with p % 0.05.

(H and I) Metaplots showing the percentage (%) of CpGmethylation at CpG islands (H) and reference genes (I) in CTC clusters (blue line) and single CTCs (dotted

red line). TSS: Transcription Start Site; TES: Transcription End Site.

(J–L) Hypergeometric gene set enrichment analysis of promoters (J), gene bodies (K) and super-enhancers (L) displaying R 20% methylation difference

(p value % 0.01) in xenograft-derived CTC clusters compared to single CTCs. Gene sets with adjusted p value % 0.05 are shown for promoters (J) and gene

bodies (K). For super-enhancers (L), the top-20 significant gene sets with adjusted p value% 0.05 are shown. Gene sets related to PRC2 activity are highlighted

in red.

(M) Histogram showing mapped reads in patient CTCs corresponding to a methylated cytosine (C) (red) or a thymine (T) (blue; corresponding to a bisulfite-

converted,

unmethylated cytosine) in representative regions that include binding sites for OCT4, SOX2, NANOG and SIN3A (shaded-orange box). n = number of CpGs

covered.
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Figure S2. TCGA Progression-free Survival Analysis of Breast Cancer Patients, Related to Figure 2

(A) Overlap of patient- and xenograft-derived CTC cluster hypomethylated regions with TCGA probes in breast cancer patients.

(B) Correlation plot ofmethylation levels across CTC cluster hypomethylated regions that are overlapping with TCGA probes and genome-widemethylation levels

detected in the same samples.

(C) Overlap of patient- and xenograft-derived single CTC hypomethylated regions with TCGA probes in breast cancer patients.

(D) Percent of DNA methylation (mean beta values) of overlapping single CTC hypomethylated probes identified in the TCGA breast cancer patient dataset.

Patients are grouped in four quantiles Q1-Q4, depending on the mean DNA methylation percentage of single CTC hypomethylated regions.

(E) Correlation plot of methylation levels across single CTC hypomethylated regions that are overlapping with TCGA probes and genome-wide methylation levels

detected in the same samples.

(F) Kaplan-Meier curve showing progression-free survival of breast cancer patients with single CTC hypomethylated overlapping probes in quantiles Q1 versus

Q4 (top panel). The number of patients that progressed at each time point of the progression-free survival analysis is shown (bottom panel).

(G) Pie chart showing the percent of ER+/PR+, HER2+ and Triple Negative (TN) breast cancer patients with CTC cluster hypomethylated overlapping probes in

quantiles Q1 versus Q4.

(H) Bar graphs showing the percent of ER+/PR+, HER2+ and Triple Negative breast cancer patients in Q1 and Q4 quantiles for CTC cluster hypomethylated

overlapping probes. ns, not significant. p = by Student’s t test.

(legend continued on next page)



(I) Pie chart showing the percent of ER+/PR+, HER2+ and Triple Negative (TN) breast cancer patients with single CTC hypomethylated overlapping probes in

quantiles Q1 versus Q4.

(J) Bar graphs showing the percent of ER+/PR+, HER2+ and Triple Negative breast cancer patients in Q1 and Q4 quantiles for single CTC hypomethylated

overlapping probes. ns, not significant. p = by Student’s t test.
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Figure S3. RNA Sequencing of Patient- and Xenograft-Derived Single CTCs and CTC Clusters, Related to Figure 3

(A and B) The plots show the number of detected features by number of cells in patient-derived (A) and xenograft-derived (B) CTCs processed with RNA

sequencing.

(C) Gene Ontology (GO) enrichment analysis of genes in the Dark Red, Dark Turquoise and Grey expression modules, significantly enriched in xenograft-derived

single CTCs.

(D–F) Dot plots showing the percent of Ki67-positive single CTCs and Ki67-positive CTCswithin CTC clusters, detected in BR16 xenograft-derived CTCs (D), LM2

xenograft-derived CTCs (E), and patient 3-derived CTCs (F). *p < 0.05 by Student’s t test. Error bars represent SEM. ID = Internal ID.

(G) Representative pictures of BR16 xenograft-derived single CTCs and CTC clusters, stained with Pan Cytokeratin (PanCK) (green), Ki67 (red) and DAPI (blue).
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Figure S4. Stemness-Related Gene Expression Analysis of Single CTCs and CTC Clusters, Related to Figure 4

(A) GO term analysis of transcripts identified in patient-derived single CTC-associated turquoise and brown modules.

(B and C) Whisker plots showing the average methylation difference in CTC clusters relative to single CTCs, detected on the 5kb region upstream of the tran-

scription start site of each target gene, in patient- (A) and xenograft-derived (B) CTCs. Hypomethylated genes in CTC clusters are represented with blue color,

hypomethylated genes in single CTCs are represented with red color. Transcription factors relative to target genes are shown within gray boxes.

(D) Venn diagram showing the overlap between genes enriched in single CTCs of patient-derived (turquoise and brown) and xenograft-derived (orange and

purple) expression modules.

(E) Regulatory network analysis of the 129 stemness-related genes that are commonly enriched in single CTCs in patient-derived (turquoise and brown) and

xenograft-derived (orange and purple) expression modules, showing TF dependence on MYF6 and ASCL1, which also display hypomethylated binding sites

based on the DMR analysis (green octagons).
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Figure S5. Screen for CTC Cluster-Targeting FDA-Approved Compounds, Related to Figure 5

(A) Average TMRM intensity of unfiltered and filtered BR16 CTC-derived cells. n = 4; Error bars represent S.E.M; ***p < 0.001 by Student’s t test.

(B) Assessment of mean CTC cluster size (area in mm2), percent (%) of viability and TMRM intensity of unfiltered and filtered BRx50 CTC-derived cells. n = 4; Error

bars represent SEM; ***p < 0.001 ****p < 0.0001 by Student’s t test; ns, not significant.

(C) Mean CTC cluster size and viability distribution of BR16 cells treated with cluster-targeting FDA-approved compounds at 5 mM concentration for 2 days

(p < 0.0001). BR16 cells that were not treatedwith FDA-approved compounds (red) or that were filtered (green) are shown for comparison. p = by one-way ANOVA

test. n = 2; Error bars represent SEM.

(D) Mean CTC cluster size (area in mm2) of BRx50 cells treated with 3 different concentrations (0.1, 0.5 and 1 mM) of CTC cluster-targeting FDA-approved

compounds (n = 2; Error bars represent SEM). BRx50 cells that were not treated with FDA-approved compounds (red) or that were filtered (green) are shown for

comparison (top). Heatmaps showing the number of nuclei, the average TMRM intensity and the percent (%) of viability of BRx50 cells treated with CTC cluster-

targeting FDA-approved compounds at the indicated concentrations (bottom). Compounds that consistently dissociate CTC clusters in both BR16 and Brx-50

cells are highlighted in red.
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Figure S6. Treatment of CTC-Derived Cell Lines with Digitoxin and Ouabain, Related to Figure 6

(A) Mean CTC cluster size (area in mm2) of BR16, BRx50, BRx07 and BRx68 CTC-derived cells treated with five different concentrations (1, 5, 10, 20 and 50 nM) of

digitoxin or ouabain (n = 4; Error bars represent SEM). Cells that were not treated with FDA-approved compounds (red) or that were filtered (green) are shown for

comparison (top). Heatmaps showing the number of nuclei, the average TMRM intensity and the percent (%) of viability of CTC-derived cells treated with digitoxin

or ouabain at the indicated concentrations (bottom).

(B and C) The histograms show the number of CTC cluster hypomethylated regions that become differentially methylated upon treatment of BR16 (B) and BRx50

(C) cells with 20 nM dixitoxin or ouabain (q % 0.05). Regions that gain >40% methylation are shown in red.

(D) Regulatory network analysis of the genes (orange) that are commonly upregulated (log2 fold-changeR 0.5) in BR16 and BRx50 CTC-derived cell lines upon

17-day treatment with digitoxin or ouabain, showing TF dependence on PBX3, MAX, NFYA, ELF2, PARP1 and HOXA10. Upregulated genes that do not show

dependence on the above TFs are shown below in red.

(E) The plot shows the mean cell intensity of Ca2+-bound Fluo-3 after 30 min treatment of BR16 or BRx50 cells with 0.1, 0.5, 1 or 5 mM digitoxin or ouabain,

respectively, relative to the untreated control (red) (n = 4; Error bars represent SEM).

(F) Western blot for CLDN3, CLDN4 and GAPDH on BR16 cells with double knockout (2KO) of CLDN3 and CLDN4. The dashed line represents the point where

irrelevant lanes were spliced out from the original scan.

(G) Plot showing the reduction in mean cluster size (area in mm2) of the CLDN3/4 double KO BR16 cells, relative to control BR16 cells. *p < 0.05; **p < 0.01 by

Student’s t test. Error bars represent SEM.
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Figure S7. Treatment with Digitoxin and Ouabain Reduces Metastasis Formation, Related to Figure 7

(A) The plots show the percent of Ki67-positive cancer cells detected in the lungs of NSG mice at Day 0 or Day 1 upon injection with BR16 CTC-derived cells,

treated in vitrowith digitoxin or ouabain. Cancer cells are identified through Pan Cytokeratin staining; n = 4mice for each condition. Error bars represent SEM; ns,

not significant.

(B) The plots show the percent of Caspase 3-positive cancer cells detected in the lungs of NSGmice at Day 0 or Day 1 upon injectionwith BR16CTC-derived cells,

treated in vitro with digitoxin or ouabain. Cancer cells are identified through Pan Cytokeratin staining; n = 4 mice for each condition. *p < 0.05 by Student’s t test;

Error bars represent SEM; ns, not significant.

(C) The plot shows the total bioluminescence flux emitted from the primary tumor of BR16 xenografts treatedwith vehicle (control) or ouabain. Error bars represent

SEM; ns, not significant.

(D) The plot shows the total number of CTCs, including both single CTCs and CTC clusters, detected per mL of blood in BR16 xenografts treated with vehicle

(control) or ouabain. n = 6 for controls and n = 5 ouabain; Error bars represent SEM; ns, not significant.

(E) The plots show the percent (%) of spontaneously generated single CTCs and CTC clusters detected in the blood of LM2 xenografts treated with vehicle

(control) or ouabain. n = 11 for controls, n = 8 for ouabain; **p < 0.01.

(F) The plot shows the total bioluminescence flux emitted from the primary tumor of LM2 xenografts treated with vehicle (control) or ouabain. Error bars represent

SEM; ns, not significant.

(G) The plot shows the total number of CTCs, including both single CTCs and CTC clusters, detected per mL of blood in LM2 xenografts treated with vehicle

(control) or ouabain. n = 11 for controls and n = 8 ouabain; Error bars represent SEM; ns, not significant.

(H) The plot shows the metastatic index of LM2 xenografts treated with vehicle (control) or ouabain. n = 18 for controls, n = 8 for oubain. *p < 0.01 by Student’s

t test; Error bars represent SEM.
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