
Clin Chem Lab Med 2018; 56(2): 186–197

Review

Lydia Giannopoulou, Sabine Kasimir-Bauer and Evi S. Lianidou*

Liquid biopsy in ovarian cancer: recent advances 
on circulating tumor cells and circulating 
tumor DNA
https://doi.org/10.1515/cclm-2017-0019
Received January 10, 2017; accepted March 2, 2017; previously 
published online July 28, 2017

Abstract: Ovarian cancer remains the most lethal disease 
among gynecological malignancies despite the plethora 
of research studies during the last decades. The major-
ity of patients are diagnosed in an advanced stage and 
exhibit resistance to standard chemotherapy. Circulating 
tumor cells (CTCs) and circulating tumor DNA (ctDNA) 
represent the main liquid biopsy approaches that offer a 
minimally invasive sample collection. Both have shown 
a diagnostic, prognostic and predictive value in many 
types of solid malignancies and recent studies attempted 
to shed light on their role in ovarian cancer. This review 
is mainly focused on the clinical value of both CTCs and 
ctDNA in ovarian cancer and, more specifically, on their 
potential as diagnostic, prognostic and predictive tumor 
biomarkers.

Keywords: circulating tumor cells; circulating tumor DNA; 
liquid biopsy; ovarian cancer; tumor biomarkers.

Introduction
Ovarian cancer causes the majority of cancer-related 
deaths from gynecological cancers and represents the 
third most frequent gynecological cancer worldwide [1]. 
Epithelial ovarian cancer is the main type, characterized 

by histological and molecular heterogeneity and is con-
sidered as a highly aggressive neoplasia. It is often diag-
nosed at an advanced stage and little progress has been 
achieved in standard chemotherapy treatment and overall 
survival (OS) during the last 3 decades [2]. Primary disease 
is treated with surgical removal of the tumor, followed by 
standard adjuvant chemotherapy, a combination of plati-
num and taxane-based treatment [3, 4]. However, in more 
than half of the cases, chemoresistance and recurrent 
disease are observed [5, 6]. New therapeutic concepts now 
include targeted therapy applying bevacizumab or the 
PARP inhibitor olaparib in certain clinical situations [7, 8].

Metastasis in ovarian cancer occurs via two main 
routes characterized by different molecular mechanisms, 
the transcoelomic passive dissemination of tumor sphe-
roids in the peritoneal fluid and ascites, and the hema-
togenous metastasis of cancer cells in blood circulation 
and their preferred seeding to the omentum. Circulating 
tumor cells (CTCs) contribute to the hematogenous meta-
static route [9, 10]. Generally, in solid malignancies, CTCs 
are exceedingly rare, and in most cases, the amount of the 
available peripheral blood sample is limited. The devel-
opment of different analytical systems for the detection, 
enumeration and molecular characterization of CTCs has 
expanded the field of liquid biopsy, providing information 
on patients clinical outcome and treatment efficacy [11].

Cell-free DNA (cfDNA) circulates at high concentra-
tions in peripheral blood of cancer patients and can be 
used for the detection of several molecular alterations 
related to cancer development [12]. Circulating tumor 
DNA (ctDNA) represents a small percentage of cfDNA that 
is shed in circulation by tumor cells and carries all these 
molecular alterations including tumor specific mutations, 
microsatellite instability (MI) [12], loss of heterozygosity 
(LOH) [13], and DNA methylation [14]. ctDNA is a very 
promising non-invasive diagnostic, prognostic and pre-
dictive tool, as it provides an easily accessible source of 
DNA derived from the tumor [15].

In this review, we will give an overview of the published 
data on CTCs and ctDNA in ovarian cancer (Figure 1). We 
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also focus on the possible role of liquid biopsy approaches 
in early diagnosis, prognosis of clinical outcome and the 
prediction of chemotherapy response or the development 
of chemoresistance in ovarian cancer patients.

Circulating tumor cells (CTCs)

Recent studies attempted to show the prognostic and pre-
dictive value of CTCs as tumor biomarkers in patients with 
ovarian cancer [16], and three meta-analyses report these 
associations using the appropriate methods for the results 
statistical analysis [17–19]. Different detection methods 
were used, mainly based on immunocytochemistry 
(microscopic detection or the FDA-approved CellSearch® 
system), RT-PCR (AdnaTest, QIAGEN, Hilden, Germany), 
and RT-qPCR for the quantification of CTCs levels [20, 21]. 
The time point of blood collection also differed, however, 
in the majority of studies the peripheral blood samples 
were obtained before surgical removal of the tumor. An 
overview of all research studies on CTCs in ovarian cancer 
patients is presented in Table 1.

The first studies on CTCs in ovarian cancer were based 
on the detection of CTCs using specific immunobeads [36] 

and an immunocytochemical (ICC) assay [35], respectively. 
Marth et al. [36] found carcinoma cells in the peripheral 
blood in 12% of ovarian cancer patients with a median 
follow-up of 25  months. The blood collection took place 
7–20 days after surgery and before adjuvant chemotherapy. 
Judson et al. [35] detected CTCs in 18.7% of ovarian cancer 
patients with 18.7  months of a median follow-up time. 
They observed that most women with CTCs had grade 3 
primary ovarian tumor compared to women without CTCs, 
and this evidence was significantly different. Both studies 
reported no significant association between the presence 
of CTCs in the peripheral blood and the clinical outcome 
of ovarian cancer patients [35, 36].

Fan et  al. [34] first reported the prognostic signifi-
cance of CTCs in primary ovarian cancer. They developed 
a new method for the detection of CTCs based on the 
ability of cancer cells to invade and ingest a cell adhesion 
matrix (CAM). In this study, CTC detection was based on 
ICC using the epithelial markers epithelial cell adhesion 
molecule (EpCAM), epithelial specific antigen (ESA) and 
a panel of seven pan-cytokeratins. They reported that the 
CAM + CTCs were invasive and their presence significantly 
correlated with decreased progression-free survival(PFS) 
(p = 0.042) [34]. The same group evaluated the prognostic 
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Figure 1: CTCs and ctDNA in ovarian cancer.
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significance of CTCs in a group of 129 pre-surgery ovarian 
cancer patients using the same method for the detection 
and identification of CTCs and observed statistically sig-
nificant association between the presence of CTCs and 
both OS (p = 0.0219) and PFS (p = 0.0024) [27]. The same 
group also investigated the predictive value of CTC levels 
in a small group of 31 ovarian cancer patients that received 
standard taxol/carboplatin chemotherapy, where blood 
specimens were obtained at different time points, before 
and after surgery and up to 24 months after chemotherapy 
treatment. Using the same assay [27], they showed a sta-
tistically significant association between CTC levels and 
disease progression [26].

Aktas et al. investigated the prognostic value of CTCs 
in a large cohort of 122 ovarian cancer patients, before 
surgery and/or after platinum-based chemotherapy. They 
used the commercially available AdnaTest BreastCancer 
(QIAGEN, Hilden, Germany), for the isolation and detec-
tion of CTCs. AdnaTest BreastCancer is based on immuno-
magnetic enrichment targeting EpCAM and anti-mucin 1 
(MUC1), followed by multiplex RT-PCR for EpCAM, MUC1 
and human growth factor receptor 2 (HER2/neu). CA-125 
transcripts were also analyzed using a singleplex RT-PCR. 
CTCs were detected in 19% of patients before surgery and 
in 27% after platinum-based chemotherapy. According 
to their findings, the presence of CTCs significantly cor-
related with shorter OS before surgery (p = 0.0054) and 
after chemotherapy (p = 0.047) [32]. In a more recent 
study, Kuhlmann et al. investigated the predictive value of 
ERCC1-positive CTCs in 143 pre-surgery epithelial ovarian 
cancer patients. AdnaTest  OvarianCancerSelect (QIAGEN, 
Hilden, Germany) was used for the immunomagnetic 
tumor cell enrichment in blood samples and AdnaT-
est OvarianCancerDetect (QIAGEN, Hilden, Germany) 
for the molecular characterization of CTCs. ERCC1 tran-
script detection was performed using singleplex RT-PCR. 
The presence of CTCs was confirmed in 14% of patients 
and was significantly correlated with OS (p = 0.041). 
ERCC1-positive CTCs (ERCC1 + CTC) were detected in 8% 
of patients and significantly correlated with both OS 
(p = 0.026) and PFS (p = 0.009). A very interesting finding 
in this study was the association of ERCC1 + CTC with plat-
inum resistance. The presence of ERCC1 + CTC at primary 
diagnosis independently predicted platinum resistance 
(p = 0.010), although the ICC analysis of ERCC1 expres-
sion in primary tumor tissue did not reveal any prognostic 
or predictive value [28]. In their very recently published 
study, they were able to show that the additional assess-
ment of ERCC1-transcripts enhances overall CTC detec-
tion rate in ovarian cancer patients before surgery and 
after chemotherapy and defines an additional highly 

overlapping fraction of ERCC1-expressing CTCs, which 
is potentially selected by platinum-based chemotherapy. 
Moreover, we describe that the assessment of CTC-derived 
ERCC1-transcripts alone is almost equivalently sufficient 
in detecting ERCC1-expressing prognostic relevant CTCs. 
We further showed that the presence of ERCC1 + CTCs 
after chemotherapy correlates with post-therapeutic 
outcome of ovarian cancer and particularly, dynamics of 
ERCC1 + CTCs mirror response to platinum-based chemo-
therapy [22].

Poveda et al. [33] also confirmed the prognostic impact 
of CTC detection in ovarian cancer after chemotherapy. 
They reported a correlation of CTC numbers with shorter 
OS (p = 0.0017) and PFS (p = 0.0024) in a phase III clinical 
trial (NCT00113607, www.clinicaltrials.gov) of pegylated 
liposomal doxorubicin (PLD) with trabectedin versus PLD 
for relapsed ovarian cancer. They used for the first time 
the CellSearch® system (Janssen Diagnostics) for CTC iso-
lation and enumeration in 216 ovarian cancer patients. 
Behbakht et al. also used the CellSearch® system for CTC 
enrichment and enumeration in a phase II clinical trial 
(NCT00429793, www.clinicaltrials.gov) for the evaluation 
of the efficacy of the mTOR inhibitor temsirolimus. Fifty 
four recurrent ovarian cancer patients were recruited and 
blood specimens were obtained before and after treatment 
with temsirolimus. No significant association between the 
presence of CTCs with PFS and OS was reported [31]. Liu 
et  al. [29] also used the CellSearch® system in 78 newly 
diagnosed and recurrent ovarian cancer patients. They 
performed serial measurements during chemotherapy, 
but according to their findings, the number of CTCs did 
not correlate with PFS or OS.

Obermayr et  al. [37] developed a six-marker gene 
panel for the molecular detection of CTCs on female cancer 
patients, including ovarian cancer, using a RT-qPCR plat-
form. The multimarker analysis using this novel panel 
positively identified 19% of the 23 ovarian cancer patients. 
The same group aimed to identify novel markers for the 
characterization of CTCs in ovarian cancer, using a density 
gradient centrifugation-based method for the isolation 
and RT-qPCR for CTC detection and quantification. They 
defined a sample as CTC positive if at least one of the 11 
gene marker panels was found over-expressed. By using 
this gene panel, they detected CTCs in 24.3% of the base-
line (before primary treatment) and 20.4% of the follow-
up (6 months after chemotherapy) samples. In two-thirds 
of the patients, cyclophilin C gene (PPIC) overexpression 
was observed, but only a few samples were identified by 
EpCAM overexpression. PPIC-positive CTCs during follow-
up were detected significantly more often in platinum-
resistant than platinum-sensitive follow-up patients. This 
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fact also indicated poor outcome independently from 
other prognostic parameters [30].

Kolostova et  al. [38] developed a novel size-based 
method (MetaCell®, MetaCell s.r.o., Ostrava, Czech 
 Republic) for the enrichment and separation of viable 
CTCs, followed by in vitro CTCs culturing and cytomorpho-
logical analysis and finally, CTC molecular characterization 
by gene expression studies using qPCR. They isolated and 
cultivated CTCs in 77 (65.2%) of 118 pre-surgery advanced-
stage ovarian cancer patients. Gene expression analysis 
was performed in 20 selected positive samples by cytomor-
phological analysis. They looked at possible associations 
between CTC presence and clinicopathological character-
istics of the patients, mainly with the CA-125 status. Based 
on their results, they proposed a new and independent 
prognosis staging information. They also suggest that 
hematogenous metastasis route is represented by CTCs 
and elevated CA-125 levels indicate lymphogenic dissemi-
nation [25]. Using the same methodology, this group aimed 
to isolate and identify CTCs in 56 ovarian cancer patients. 
In this study, gene expression analysis was performed in 
all samples found positive by cytomorphological analysis. 
They reported that EpCAM relative expression is elevated 
in CTC-enriched fractions compared to whole peripheral 
blood sample and that this expression grows with in vitro 
cultivation time. They suggested that a seven-gene panel, 
including EpCAM and MUC16, could better confirm the 
presence of CTCs in peripheral blood of ovarian cancer 
patients, than a one-marker test [24]. Both studies did not 
provide any information on the patients clinical outcome 
with regard to OS and/or PFS data [24, 25].

A very recent study on CTCs in ovarian cancer pro-
posed a multi-marker gene panel for gene expression pro-
filing of single CTCs [23]. Blassl et al. used the AdnaTest 
OvarianCancerSelect (QIAGEN, Hilden, Germany) and/
or the AdnaTest EMT-1/StemCellSelect (QIAGEN, Hilden, 
Germany) for CTC isolation and enrichment in peripheral 
blood samples of 10 pre-surgery epithelial ovarian cancer 
patients. CTCs were detected and characterized by using 
the AdnaTest OvarianCancerDetect (QIAGEN, Hilden, 
Germany) and the AdnaTest EMT-1/StemCellDetect. They 
isolated single cells using CellCelector (ALS GmbH, Jena, 
Germany) from only three ovarian cancer patients. Single 
CTCs were characterized by multiplex-RT-PCR, followed 
by capillary electrophoresis. The multiplex-RT-PCR gene 
panel included stem cell (CD44, ALDH1A1, Nanog, Oct 4) 
and EMT (N-cadherin, Vimentin, Snail2, CD117, CD146) 
markers. They observed inter-cellular and intra/inter-
patient heterogeneity and co-expression of epithelial, 
mesenchymal and stem cell transcripts on the same CTC 
simultaneously [23].

Cell-free DNA (cfDNA)
A sufficient number of studies on cfDNA in patients with 
ovarian cancer pursued to clarify its clinical value [39]. 
For this purpose, they quantified total cfDNA and/or the 
circulating cell-free mitochondrial DNA (mtDNA) levels 
in some cases, or aimed at the detection of different 
genetic and epigenetic alterations, such as chromosomal 
abnormalities and specific tumor LOH, cancer-related 
somatic gene mutations and aberrant DNA methylation. 
Additionally, in a recent case study, Martignetti et  al. 
[40] detected the FGFR2-FAM76A tumor-specific fusion 
in cfDNA of an advanced stage serous epithelial ovarian 
cancer patient.

However, in some cases, the results are still contro-
versial. The discrepancies probably occur due to the dif-
ferent methods and pre-analytical conditions, the use 
of serum instead of plasma by some researchers and the 
different volumes of plasma/serum for cfDNA extrac-
tion. Many studies focused on the potential use of cfDNA 
as a diagnostic, prognostic and predictive biomarker in 
ovarian cancer and a recent meta-analysis by Zhou et al. 
attempted to evaluate the role of cfDNA in ovarian cancer 
diagnosis [41]. An overview of the research studies on 
cfDNA in ovarian cancer is summarized in Table 2.

The first studies on ovarian cancer circulating DNA 
attempted to quantify the total cfDNA amount, or the 
nuclear and mitochondrial DNA amounts separately, in 
plasma or serum of ovarian cancer patients. One of the 
first studies on cfDNA in ovarian cancer screening aimed 
to quantify plasma cfDNA using a real-time PCR assay for 
three reference genes and to determine the number of 
genome equivalents (GE) using a standard curve. Kamat 
et al. [42] reported that cfDNA levels in advanced ovarian 
cancer samples were elevated when compared to controls. 
A more recent study on ovarian cancer screening using 
cfDNA quantification showed a significant increase in 
serum cfDNA of advanced stage ovarian cancer patients 
compared to early stage (p < 0.01). Shao et  al. [47] also 
reported a correlation between serum cfDNA levels and 
ovarian cancer occurrence using receiver operating char-
acteristic (ROC) curves and a branched DNA (bDNA) tech-
nique for cfDNA quantification.

Kamat et  al. also investigated the prognostic value 
of cfDNA in epithelial ovarian cancer. They quantified 
plasma cfDNA levels in 164 epithelial ovarian cancer 
patients using real-time PCR for β-globin and determined 
the number of GE. They reported a significant association 
of cfDNA > 22,000 GE/mL with decreased PFS (p < 0.001) 
and this association was shown as an independent prog-
nostic value (p = 0.02) after adjusting for other clinical 
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characteristics [44]. On the contrary, No et al. [45] exam-
ined the prognostic value of cfDNA and reported no 
significant difference between cfDNA levels of cancer 
patients and patients with benign disease. They recruited 
36 epithelial ovarian cancer samples and 16 benign tumor 
samples and used commercially available copy number 
assay kits to measure cfDNA levels of four selected genes, 
but they used serum as cfDNA source instead of plasma.

In a more recent study, Steffensen et  al. measured 
plasma cfDNA levels of 144  multiresistant epithelial 
ovarian cancer patients treated with bevacizumab using 
real-time PCR for cyclophiline A gene. They found a sta-
tistically significant correlation between cfDNA levels and 
both PFS (p = 0.0004) and OS (p = 0.005) in both univariate 
and multivariate survival analyses. Thus, they concluded 
that plasma cfDNA is an independent prognostic factor in 
platinum-resistant ovarian cancer patients treated with 
bevacizumab [46].

Ten years ago, Kamat et al. [71] proposed the  potential 
use of tumor-specific cfDNA levels in predicting tumor 
response to chemotherapy, by using an orthotopic mouse 
model. Capizzi et  al. further investigated the predictive 
value of cfDNA in ovarian cancer patients. They quanti-
fied plasma cfDNA levels before and after chemotherapy 
in 22 epithelial ovarian cancer patients of a prospective 
nonrandomized clinical study and found a significant dis-
crimination between patients and healthy controls and a 
correlation of cfDNA amounts with response to standard 
chemotherapy [43].

Altered circulating cell-free mtDNA content may serve 
as a potential cancer biomarker in many solid malig-
nancies [72]. In ovarian cancer, only two studies include 
the determination of circulating cell-free mtDNA levels. 
Zachariah et  al. quantified nuclear cfDNA and circulat-
ing cell-free mtDNA levels using a multiplex qPCR assay, 
in serum and plasma of patients with epithelial ovarian 
cancer, benign epithelial tumors and endometriosis, and 
a healthy control group. They found a significant increase 
in nuclear cfDNA and circulating cell-free mtDNA amounts 
in ovarian cancer patients compared to both healthy 
group and benign epithelial tumor patients. Interestingly, 
they reported a significant difference between ovarian 
cancer patients and the endometriosis group circulat-
ing cell-free mtDNA, but not in nuclear cfDNA [48]. More 
recently, Choudhuri et  al. investigated whether nuclear 
cfDNA and circulating cell-free mtDNA levels can be used 
for advanced epithelial ovarian cancer diagnosis and for 
the prediction of treatment response. They recruited 100 
patients and measured both levels before treatment, but 
in only 20 patients after the completion of chemotherapy. 
A significant difference was reported in nuclear cfDNA 

levels of the follow-up patients before and after treatment, 
but not in circulating cell-free mtDNA levels [49].

Circulating tumor DNA (ctDNA)
Circulating tumor DNA (ctDNA) constitutes a tiny sub-
group of total cfDNA in the peripheral blood of cancer 
patients [73]. The following studies refer on specific aber-
rations characterizing ctDNA shed in the circulation from 
the primary ovarian tumor. They are classified according 
to specific genetic or epigenetic alterations detected only 
in ctDNA, shown as below.

Chromosomal abnormalities/LOH

It is well known that ovarian cancer and in particular the 
high-grade serous ovarian cancer (HGSC) subtype, is char-
acterized by frequent chromosomal instability [5]. Recent 
studies aimed to detect copy number variations (CNV) 
[51] and to quantify specific LOH [13] or aberrant somatic 
chromosomal rearrangements [50] in ctDNA of ovarian 
cancer patients. Kuhlmann et al. quantified cfDNA of 63 
primary epithelial ovarian cancer patients before surgery 
and after chemotherapy. They used a PCR-based fluores-
cence microsatellite analysis in order to measure the LOH 
in two fractions of cfDNA, the high- and low molecular-
weight fraction (HMWF and LMWF, respectively). They 
reported that LOH at two markers can predict tumor grade 
(p = 0.033) and FIGO stage (p = 0.004) in the LMWF cfDNA. 
Remarkably, a LOH at another marker can significantly 
predict patients OS (p = 0.030) in both HMWF and LMWF 
[13].

Harris et al. introduced an algorithm for the quanti-
fication of cfDNA using a qPCR assay in order to predict 
relapse and treatment efficacy. They identified aberrant 
chromosomal junctions in primary tumors of 10 ovarian 
cancer patients and detected them in plasma ctDNA of 
eight patients before surgery. In three cases, ctDNA was 
also detected after surgery, indicating the presence of the 
disease, but in the remaining five cases, ctDNA was absent 
after surgery, indicating the consequential absence of the 
disease [50].

The first study on ovarian cancer screening using 
CNV detection in cfDNA was elaborated by Cohen et  al. 
[51]. They applied a well-established non-invasive pre-
natal testing (NIPT) commercial platform in cfDNA of 16 
pre-surgery early and 16 advanced HGSC patients. The 
obtained sequencing data were analyzed for the detection 
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of subchromosomal changes and the determination of 
whole chromosome gains or losses. They detected 40.6% 
of all HGSC cases, and more specifically, 38% of early 
stages, indicating a potential utility for early HGSC screen-
ing in plasma cfDNA based on specific multiple segmental 
chromosome gains and losses [51]. However, more valida-
tion studies along with the improvement of pre-analytical 
conditions and the examination of paired tumor DNA are 
needed before the routine application of this approach [74].

Vanderstichele et  al. reported for the first time the 
potential of using cfDNA for primary HGSC diagnosis. 
They recruited 68 patients with an adnexal mass, includ-
ing 57 diagnosed with invasive or borderline carcinoma 
and 11 with benign disease. They measured specific pat-
terns of chromosomal instability in plasma cfDNA of all 
patients and reported a significantly higher quantitative 
measure of chromosomal instability in ovarian cancer 
patients compared to patients with benign disease or 
healthy individuals [52].

Somatic mutations

Few studies attempted to detect tumor-specific somatic 
mutations in ctDNA of epithelial ovarian cancer patients. 
Otsuka et  al. [53] first identified TP53 mutations in 
only two/12 pre-surgery plasma cfDNA of patients with 
ovarian cancer. A tumor-specific TP53 mutation was 
also detected in 21 out of 69 cfDNA samples of epithe-
lial ovarian cancer patients in a study by Swisher et al. 
The presence of ctDNA characterized by this mutation 
was significantly associated with decreased survival 
(p = 0.02) [54]. Mutations of KRAS gene were investi-
gated by  Dobrzycka et  al. in plasma cfDNA of 126 epi-
thelial ovarian cancer patients. They detected KRAS 
mutations in 43.7% of patients and reported a signifi-
cantly decreased OS for patients with serous ovarian 
tumors and detectable cfDNA (p = 0.022) [55].

The development of very sensitive novel technologies 
for ctDNA detection overcomes the issue of the extremely 
low concentrations of ctDNA out of the total cfDNA. Based on 
this concept, Forshew et al. proposed a different approach 
for the detection and identification of cancer- specific muta-
tions in plasma ctDNA. They established a novel method for 
targeted deep sequencing (Tam-Seq) of mutations at low 
allele frequencies (AF) with increased sensitivity and speci-
ficity, and measured mainly the frequencies of TP53 mutant 
alleles at ctDNA of 46 advanced stage HGSC patients. 
Remarkably, an EGFR mutation was detected in one ctDNA 
sample but not in the initial ovarian tumor tissue. All results 
were confirmed using digital PCR [56].

Murtaza et  al. performed whole exome sequencing 
in plasma ctDNA of three ovarian cancer patients. Serial 
sample measurements and quantification of allele frac-
tions in ctDNA led to the identification of specific gene 
mutations related to acquired resistance to treatment. The 
genes with significantly increased mutant AFs are shown 
in Table 2. All results were confirmed using both digital 
PCR and Tam-Seq assay [57].

Another study by Bettegowda et  al. accomplished 
the detection of ctDNA using digital PCR-based assays 
for mutation analyses in a large cohort of patients with 
different malignancies, including seven patients with 
advanced stage ovarian cancer. They detected ctDNA 
in most metastatic cancer patients and quantified the 
mutant fragments for the determination of cfDNA con-
centration. They reported a high mutant allele fragments 
(approximately 10,000 per 5  mL) for advanced ovarian 
cancer patients [58].

In a more recent study, Pereira et al. recruited patients 
with gynecological malignancies, including 22 ovarian 
patients, and identified specific cancer-related muta-
tions using whole exome and targeted sequencing. They 
also measured and quantified ctDNA levels using droplet 
digital PCR (ddPCR). The detectable ctDNA after treatment 
significantly predicted survival for eight ovarian cancer 
patients, indicating a possible role of ctDNA measure-
ments in personalized medicine [59].

Aberrant methylation

Epigenetic alterations hold an important role in cancer 
initiation and progression and aberrant DNA methylation 
patterns, mainly characterized by promoter hypermeth-
ylation, are a frequent event in most human cancers [75]. 
Epigenetic inactivation of a tumor suppressor gene often 
results from its promoter methylation and is considered 
as an early event during carcinogenesis [76]. Many studies 
have reported methylation changes in ovarian cancer [77] 
and a recent review summarizes the differences in the 
observed methylation patterns in the main histological 
subtypes of the disease, including HGSC [78]. DNA meth-
ylation changes have the potential to serve as biomarkers 
for early diagnosis of gynecological malignancies [79]. 
This is also observed in Table 2; only one study by Gifford 
et  al. [60] aimed to show the prognostic value of ctDNA 
methylation in ovarian cancer.

In this study, the researchers investigated hMLH1 
methylation status in plasma cfDNA of 138 epithelial 
ovarian cancer patients enrolled in a phase III clini-
cal trial (NCT00003998, www.clinicaltrials.gov), before 
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carboplatin/taxoid chemotherapy and at relapse. They 
reported an increase in hMLH1 methylation at relapse and 
the remarkable presence of cfDNA methylation at 25% of 
relapse patients that was not detected before chemother-
apy. This acquired methylation provided significant clini-
cal information for patients OS (p = 0.007) [60].

Ibanez et  al. examined RASSF1A and BRCA1 hyper-
methylation in cfDNA of 50 epithelial ovarian cancer 
patients and first confirmed the detection of methyla-
tion in early stage (stage I, II) patients, using methylation 
specific PCR (MSP). They also observed a concordance 
between tumor and plasma/serum DNA methylation pat-
terns in 82% of matched samples [61].

A microarray mediated methylation assay (MethDet 
test) was developed by Melnikov et al. [62] and its applica-
tion in 33 serous ovarian cancer patients led to the charac-
terization of a five genes panel for ovarian cancer detection. 
The same group used this assay in three cohorts of serous 
ovarian cancer patients, benign ovarian disease patients 
and healthy controls. Liggett et  al. [63] now reported the 
distinctive promoter methylation of all three groups accord-
ing to the methylation status of six selected genes.

A larger study by Bondurant et al. quantified RASSF1A 
promoter methylation in 106 serous ovarian cancer cfDNA 
samples, using a novel quantitative real-time PCR assay. 
They found RASSF1A promoter methylation in about 
half of ovarian cancer patients and observed agreement 
in the methylation status of 20 available paired tumor/
serum samples. Interestingly, they measured RASSF1A 
methylation in nine patients over the course of treatment 
and found a concordance between cfDNA methylation 
changes and disease progression for eight patients, sug-
gesting a possible role of cfDNA methylation in ovarian 
cancer prognosis [64].

Our group also reported RASSF1A promoter methyla-
tion in plasma ctDNA of 15/59 patients with high-grade 
serous ovarian cancer using a real-time MSP assay. We 
performed the first comparison study on RASSF1A pro-
moter methylation in primary tumors, adjacent tissues 
and plasma samples in HGSC patients and we observed 
an agreement between primary tumor samples and corre-
sponding plasma in 62.3% of cases studied [65].

Zhang et al. developed a multiplex-MSP assay for the 
early detection of ovarian cancer. They recruited 87 epi-
thelial ovarian cancer patients and examined the serum 
cfDNA methylation status of seven selected genes simul-
taneously. A sample was characterized as positive, if at 
least one gene was found methylated [67]. In a more recent 
study by Wang et  al., a multiplex-nested MSP was also 
developed for the detection of three genes methylation 
in 114 serum cfDNA of epithelial ovarian cancer patients. 

cfDNA methylation levels were significantly increased 
in ovarian cancer patients compared to benign disease 
patients and healthy control groups [70].

Furthermore, studies on SLIT2 [66], OPCML [69] and 
RASSF2A [68] promoter methylation in cfDNA of epithelial 
ovarian cancer patients demonstrate the frequently aber-
rant methylation status of these genes and suggest a pos-
sible role for ovarian cancer early detection.

Methylation patterns in whole-blood DNA and 
white blood cell (WBC) DNA in ovarian cancer patients 
have been also examined using methylation arrays and 
bisulfite pyrosequencing. Teschendorff et  al. [80] per-
formed a methylation study in peripheral blood DNA of 
pre- and post-treatment ovarian cancer patients and they 
observed a significantly different methylation pattern 
in blood DNA of epithelial ovarian cancer patients com-
pared to healthy controls. Flanagan et  al. [81] investi-
gated WBCs DNA methylation status in 880 epithelial 
ovarian cancer patients enrolled in a phase III clinical trial 
(NCT00003998, www.clinicaltrials.gov), using bisulfite 
pyrosequencing and reported a significant correlation 
between mean SFN methylation and PFS (p = 0.016). The 
same group analyzed blood DNA methylation patterns in 
247 ovarian cancer patients enrolled in the previous clini-
cal trial. They identified specific CpGs alterations in blood 
DNA at relapse after platinum-based chemotherapy and 
found an independent significant association with sur-
vival (p = 2.8 × 10−4) [82].

Conclusions
The development of a cancer biomarker and its imple-
mentation in the clinical routine requires a multistage 
procedure and constitutes the final result of multiannual 
and toilsome research approaches. However, multiple pre-
analytical, analytical and post-analytical issues should be 
overcome and studies on the assay validations with regard 
to repeatability and reproducibility are also necessary 
[83]. The lack of effective biomarkers for early detection, 
prognosis of clinical outcome and response to treatment 
contributes to the maintenance of low survival rates for 
ovarian cancer patients, despite the numerous research 
studies on the field, the last decades. Liquid biopsy pro-
cedures are minimally invasive and allow for the easily 
tolerated serial sample measurements during the course 
of treatment. This can help towards the establishment 
of more efficient personalized therapeutic algorithms 
and real-time therapy monitoring. Nevertheless, specific 
challenges should be taken into account for CTCs and 
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ctDNA analyses, including pre-analytical issues about the 
sample volume, the proper tubes for sample collection, 
the samples storage and the time of the analysis, quality 
control and analytical validation of the assays.

The clinical significance of both CTCs and ctDNA has 
been revealed in many types of cancer [84], including 
ovarian cancer. However, no standard methods are used 
for the isolation and detection in the bloodstream and few 
studies recruited large cohorts of ovarian cancer patients. 
Further studies towards the validation, standardization 
and quality control of the assays used are a matter of 
utmost importance before the implementation of liquid 
biopsy approaches in the clinical routine.
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