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REVIEW

Single cell sequencing: a distinct new 
field
Jian Wang and Yuanlin Song*

Abstract 

Single cell sequencing (SCS) has become a new approach to study biological heterogeneity. The advancement 
in technologies for single cell isolation, amplification of genome/transcriptome and next-generation sequencing 
enables SCS to reveal the inherent properties of a single cell from the large scale of the genome, transcriptome or 
epigenome at high resolution. Recently, SCS has been widely applied in various clinical and research fields, such as 
cancer biology and oncology, immunology, microbiology, neurobiology and prenatal diagnosis. In this review, we will 
discuss the development of SCS methods and focus on the latest clinical and research applications of SCS.
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Introduction
The majority of experimental and clinical results from 
cell culture or tissues are based on the assumption that 
all of the cells in a culture or tissue are homogeneous. 
The thriving omics fields of study (genomics, proteom-
ics, transcriptomics, etc.) analyze and mine biomarkers 
mainly based on the bulk of cells or tissue samples. How-
ever, this averaging of messages always misses the critical 
information because the heterogeneity of the samples is 
ignored, while the nature of biology is diverse. Hetero-
geneity is generally explained at three different levels in 
the biological universe: first, there is heterogeneity in 
different organisms; second, there is heterogeneity in 
different organs or tissues from an organism; third, cel-
lular heterogeneity exists in the same organ or tissue. In 
fact, the concept of cellular heterogeneity was proposed 
as early as 1957 [1]. Each cell was considered as a unique 
unit with molecular coding across the DNA, RNA, and 
protein conversions [2]. Thus, it is necessary to conduct 
studies, especially omics studies, at the single cell level.

A single cell is the smallest structural and functional 
unit of an organism. The estimated number of single 
cells in the human body is 3.72  ×   1013 [3]. The size or 
weight of a cell varies from different tissue backgrounds. 
The major components of a cell include water, inorganic 
ions, small organic molecules, proteins, RNA and DNA. 

However, the minute numbers of copies of a gene (10–
12 M) in a single cell are more than enough for conven-
tional genomic analysis [2, 4]. In 2009, the first single 
cell whole transcriptome sequencing (WTA) protocol 
was applied to analyze transcriptome complexity in indi-
vidual cells [5]. Subsequently, single cell whole genome 
sequencing (WGS) was created in 2011 [6], single cell 
whole exome sequencing (WES) was developed in 2012 
[7, 8], and single cell epigenomic sequencing was devel-
oped in 2013 [9]. Currently, single cell sequencing (SCS) 
has been applied in various research and clinical fields, 
and the top five areas of SCS studies in order are cancer, 
embryonic development, microbiology, neurobiology and 
immunology, according to the reported statistics [10]. 
The number of SCS publications in these five areas has 
been increasing every year. Thus, this article will enable 
us to have a deep and broad view of SCS methods and to 
focus on the latest application of SCS in basic and clinical 
research.

Single cell isolation methods
Isolating single cells from a tissue mass or from cell cul-
ture is the first key step prior to SCS. Currently, the alter-
native methods used to isolate single cells from abundant 
populations include serial dilution, mechanical microma-
nipulation, laser capture microdissection (LCM), fluo-
rescence activated cell sorting (FACS), and microfluidics 
[11, 12]. Although serial dilution is the simplest method 
to obtain a single cell in a single well via serial double 
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dilution, it is a coarse and imprecise method that is rarely 
used in SCS (Fig.  1a). Our team has tried to use this 
method to isolate a single cell from primary lung cancer 
cells in cell suspension and found that it was hard to con-
trol the quality and quantity [13].

Mechanical micromanipulation is a classic method to 
isolate uncultivated microorganisms or early embryos, 
and it involves using a capillary pipette to suck up a sin-
gle cell from a cell suspension with visual inspection of 
cellular morphology and coloring characteristics under a 
microscope [13, 14] (Fig. 1b). The drawback of mechani-
cal micromanipulation is that it is low-throughput and 
time-consuming and can cause cellular injury from 
mechanical shearing during manipulation [15]. Addition-
ally, it often leads to a failure for an unskilled manipulator 
or misidentification of the cellular morphology under the 
microscope.

FACS is the most efficient and economical method 
to isolate hundreds of thousands of individual cells per 
minute based on their size, granularity and fluorescence 
properties [4] (Fig.  1c). The high-throughput, time-sav-
ing and automatic properties are the main advantage 
of FACS. Additionally, it allows researchers to isolate 

specific individual cells from heterogeneous cell samples 
by labeling the targeted cells with specific fluorescent 
antibodies [16], and it allows researchers to sort a single 
viral particle from a mixed viral assemblage for single 
viral genome sequencing [17]. BD Aria II/III (BD Bio-
sciences, San Jose, CA, USA) and Beckman Coulter MO-
FLO XDP cell sorter (Beckman Coulter, Brea, CA, USA) 
are two widely used commercial instruments for flow 
cytometry [11]. Our team has used the BD Aria III to sort 
individual living cells from lung cancer tissue single cell 
suspensions that were stained with carboxyfluorescein 
diacetate succinimidyl ester (CFSE) and sorted into 96- 
well plates [18]. However, a bulk population of the cells 
(at least 5 × 105–1 × 106/ml) should be prepared as sort-
ing material, which is greatly limited in accommodating 
low-abundance cell subpopulations. The high-speed fluid 
and fluorescent dye can damage the viability of cells.

Microfluidics is a newly developed and highly inte-
grated system that sequentially processes or manipu-
lates small volumes of fluids (10−9–10−18 l) in channels 
with dimensions of tens to hundreds of micrometers 
to achieve single cell culture and sequencing, that 
has been applied to single cell experiments [19, 20] 
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Fig. 1  The current methods for single cell isolation. a Serial dilution. b Mechanical micromanipulation. c Laser capture microdissection (LCM).  
d Fluorescence activated cell sorting (FACS). e Microfluidics. f The representative platform for circulating tumor cells (CTCs) isolation: CellSearch
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(Fig.  1e). Recently, various microfluidics platforms 
have emerged for single cell whole-genome, whole-
transcriptome or epigenomics sequencing [21–23]. 
The advancement of microfluidics research has 
extended to separate nanoparticles, such as DNA iso-
lation [24]. The advantages for microfluidics are the 
ability to input nanoliter-to-picoliter volumes of sam-
ples and to output accurate results with high resolu-
tion and sensitivity [19]. Additionally, microfluidics 
can provide parallel and timely analyses to make stud-
ies more efficient.

The main limitation of the above-mentioned meth-
ods is that the sample must be prepared in suspension 
and thus have lost the spatial location of the cells in 
the tissue. LCM overcomes this limitation and directly 
isolates single cells from tissue sections based on the 
cellular morphology (Fig.  1d). The targeted single cell 
can be stained with fluorescent or chromogenic anti-
bodies for LCM [11]. The main drawbacks include low-
throughput, slicing the cells during the course of tissue 
sectioning, and UV damage to nuclei from the laser 
[12].

The increasing number of studies on rare single cells 
(<1%) poses a challenge on the current methods for single 
cell isolation. Now, several new technologies have been 
developed to cover the shortcomings of the above-men-
tioned methods in rare single cancer cell isolation, such 
as CellSearch (Johnson & Johnson), MagSweeper (Illu-
mina Inc.), DEP-Array (Silicon Biosciences), CellCelec-
tor (Automated Lab Solutions), and nanofabricated filters 
(CellSieve) [25]. The FDA-cleared CellSearch system is 
the most-advanced commercially available technology 
using anti-EpCAM ferrofluid and has been applied to the 
monitoring of patients with metastatic prostate, breast, 
or colorectal cancer in hospitals [26, 27] (Fig. 1f ). Mag-
Sweeper is an automated immunomagnetic separation 
technology for enrichment of rare cells in mixed popula-
tions with high purity [28]. DEP-Array uses a microfluid-
ics chip with dielectrophoretic cages to isolate single cells 
by  charge [12, 29]. The CellCelector uses a robotic arm 
carrying a module to retrieve single cells from microw-
ells for micromanipulation [30]. The CellSieve system can 
capture a variety of circulating tumor cells based on size 
discrimination instead of specific cell surface markers 
[31].

Single cell sequencing methods
The advance in the next-generation sequencing (NGS) 
technologies has promoted the rapid development of 
SCS, including single cell whole-genome sequencing, 
single cell whole-exome sequencing, single cell whole-
transcriptomic sequencing and single cell epigenomic 
sequencing [32–34].

Single cell whole‑genome/whole‑exome sequencing
The amount of DNA (approximately 6  pg) in a single 
cell is insufficient to meet the demand for next-gener-
ation sequencing, and thus whole genome amplifica-
tion (WGA) was developed to amplify the DNA by the 
hundreds of thousands [25, 35]. Recently, the alterna-
tive WGA technologies have polymerase chain reaction 
(PCR), multiple displacement amplification (MDA), or a 
combination of displacement pre-amplification and PCR 
amplification [36]. In PCR-based WGA methods, degen-
erate oligonucleotide-primed PCR (DOP-PCR) is the 
most widely used method to amplify the entire genome 
[37, 38]. The principle of DOP-PCR is to perform a low 
annealing degenerate primer extension on the DNA 
template and then to amplify the tagged sequences at a 
high annealing temperature [37, 39] (Fig.  2a). The main 
shortcoming for DOP-PCR is the low physical coverage 
(approximately 10%) of a single cell genome, which is 
prone to miss single-nucleotide polymorphisms (SNPs), 
but DOP-PCR is the optimal method for copy-number 
variations (CNVs) or aneuploidy detection because of the 
uniformity of amplification during WGS [12, 40, 41]. The 
established MDA technologies are based on the discov-
ery of two specific DNA polymerases: Phi29 DNA poly-
merase  isolated from the Bacillus subtilis, and Bst DNA 
polymerase isolated from Bacillus stearothermophilus 
[42–44]. The mechanism of MDA is to yield continuous 
strand displacement DNA amplification using Phi29 or 
Bst DNA polymerase and random primers under isother-
mal conditions [45] (Fig. 2b). Phi29 DNA polymerase has 
been considered the optimal choice for MDA because it 
shows higher efficiency, higher fidelity and a lower error 
rate compared with Bst DNA polymerase which has no 
proofreading activity [10, 46]. The advantages of MDA 
are that it has high single cell genome or exome coverage 
(>90%), which can accurately measure mutations at base-
pair resolution and that it yields adequate quantities of 
product (average length >10 kb) from single cell genomic 
DNA in a short time with high fidelity [47]. However, the 
main drawbacks of MDA are uneven genome coverage, 
chimeric sequences, and contamination issues [15]. Mul-
tiple annealing and looping based amplification cycles 
(MALBAC) is the newly applied WGS method that com-
bines quasi-linear strand displacement pre-amplification 
by a polymerase and exponential amplification by PCR 
[33] (Fig. 2c). Remarkably, MALBAC has low amplifica-
tion bias and can achieve 93% genome coverage ≥1× and 
25× mean sequencing depth in a single cell during 
WGS. Moreover, MALBAC shows higher efficiency to 
detect CNVs and SNPs for its improved uniformity and 
a lower allele dropout rate, compared with MDA [36]. 
The pitfall of MALBAC is the extremely high false posi-
tive rate for SNV detection because of the low fidelity 
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of Bst DNA polymerase, and the loss of underamplified 
regions of the genome [48]. Another improved method, 
nuc-seq or single nucleus exome sequencing (SNES), has 

been developed to reduce the bias, this method combines 
flow-sorting of single G1/0 or G2/M nuclei, time-limited 
isothermal MDA, exome capture, and NGS [49, 50]. The 
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Fig. 2  Schematic of the whole genome amplification methods for single cell sequencing. a Degenerate oligonucleotide-primed PCR (DOP-PCR).  
b Multiple displacement amplification (MDA). c Multiple annealing and looping based amplification cycles (MALBAC)
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main advantage of this method is the  high detection 
efficiencies for  single-nucleotide variations (SNVs) and 
indels benefiting from the high physical coverage (96%) 
of the single cell genome and exome [50].

Single cell whole‑transcriptomic sequencing
It is estimated that the amount of total RNA or mRNA 
is only approximately 10  pg or approximately 0.1  pg, 
respectively, in a single cell [10]. Thus, WTA is a nec-
essary step to construct a cDNA library for single cell 
transcriptomic sequencing. WTA has been applied to 
amplify RNA from a single cell to obtain the gene expres-
sion profile in microarray prior to the advent of NGS [51, 
52]. Tang et  al. [5] improved the single cell whole-tran-
scriptome amplification method and used NGS instead 
of microarray to identify more genes and previously 
unknown splice junctions in single cells. The principle 
of this method is to use oligo dT primers conjugated to 
adapter sequences for reverse transcription and selec-
tive amplification of polyadenylated mRNA by PCR [5, 
10, 53] (Fig. 3a). However, this method generates 3′-end 
skew bias during reverse-transcription to miss proxi-
mal splicing events [34]. Another WTA method, called 
SMART-seq, was developed to use Moloney murine leu-
kemia virus (MMLV)  reverse  transcriptase to construct 
full-length  cDNA  libraries [54]. The two key features, 
template-switching and terminal transferase activity, 
of the enzyme can lead to adding a few non-templated 
C nucleotides to the cDNA and switching templates to 
transcribe the other strand [55] (Fig. 3b). The advantage 

of SMART-seq is to generate and amplify full-length 
cDNA from single cell RNA, leading to the detection 
of alternatively spliced exons [56]. The low sensitivity of 
SMART is the main shortcoming that was improved in 
a subsequently developed method, called SMART-seq2 
[57]. Similarly, single cell tagged reverse-transcription 
(STRT) is based on the template-switching property 
of the reverse transcriptase to tag the 5′-end of cDNA 
[58]. This method enables researchers to compare gene 
expression profile differences without bias in multiple 
samples, but it yields a strong 5′-end bias. Cell expression 
by linear amplification and sequencing (Cel-seq) labels 
cDNA with a barcode and pools these cDNA from multi-
ple single cells for in vitro transcription (IVT) to linearly 
amplify cDNA [59]. The CEL-Seq generates more repro-
ducible,  linear, and sensitive results in comparison with 
the PCR-based amplification method, but it yields a high 
3′-end skew bias and loses the full spectrum of transcript 
variant detection [60]. Additionally, the unique molec-
ular identifiers (UMIs) labeling technique is applied 
in single cell WTA to achieve quantitative single cell 
RNA sequencing [61] (Fig.  3c). This method obviously 
increases the accuracy in single cell whole-transcriptome 
sequencing by eliminating amplification bias. Recently, 
two new droplet-based RNA-seq technologies, named 
as Drop-seq and inDrop (indexing droplets), has been 
exploited to sequence in parallel thousands of single cells 
from a tissue [62, 63]. Each nanoliter-scale aqueous drop-
let is a tiny reaction chamber that contains a single cell, 
barcoded and UMI-labeled primers, and reaction buffer. 
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STAMPs (Single-cell Transcriptomes Attached to Micro-
particles) is PCR amplified for sequencing in Drop-seq, 
while Cell-seq is used by inDrop for sequencing. The 
advantages of these methods are to differentiate the cell-
of-origin of each mRNA which helps to develop single 
cell analysis in a complicated tissue, and the low techni-
cal noise that allows the analysis of thousands of different 
cells in parallel. The latest commercial platform—Chro-
mium™ System from 10× Genomics—integrates the 
Gemcode platform, which separates long pieces of DNA 
into droplets to create barcoded sequencing libraries [64, 
65]. The high efficiency and flexible throughput of this 
method allows researchers to dynamically detect tran-
scriptional profiles of single cells at scale [66].

Single cell epigenomic sequencing
Epigenomics is defined as a phenomenon that changes 
the final outcome of a chromosome without changing the 
underlying DNA sequence, including DNA methylation, 
histone modifications, chromatin packaging, small RNA, 
etc. [67]. Recently, single cell epigenomic sequencing 
studies are on the rise with the application of new single 
cell epigenomic sequencing methods. Single cell reduced 
representation bisulfite sequencing (scRRBS) integrates 
all the experimental steps before PCR amplification into a 
single-tube reaction to avoid unnecessary DNA loss and 
enables the detection of approximately 40% of the CpG 
sites in comparison with standard RRBS using thousands 
of cells [68, 69]. Another method, single cell bisulfite 
sequencing (scBS-seq), modifies the Post-Bisulfite Adap-
tor Tagging (PBAT) to perform bisulfite conversion prior 
to successive primer extension with oligo1 and oligo2 
tagged random primers to generate amplicons [70]. The 
drawbacks of these methods are DNA loss, purifica-
tion, and disability to discriminate 5mC from 5hmC for 
bisulfite conversion [34]. Moreover, single cell chromatin 
immunoprecipitation followed by sequencing (scChIP-
seq) combines microfluidics, DNA barcoding and 
sequencing to collect low coverage maps of the chroma-
tin state at single cell resolution [71]. Additionally, other 
methods have been developed for single cell epigenomic 
sequencing, such as Hi-C methods that characterize 
chromatin interactions in the genome of single cells [9], 
and single chromatin molecule analysis at the nanoscale 
(SCAN) that extracts single chromatin with fluorescent 
antibodies through fluidic channels [72].

Application of single cell sequencing
Cancer
Cancer heterogeneity comes from clone diversity and 
mutational evolution, which promote cancer cell sur-
vival and metastasis and confound the cancer diagnosis 
and treatment [10, 73]. A deep understanding of cancer 

heterogeneity can contribute to therapeutic decisions. 
Thus, SCS as an ideal tool has been increasingly applied 
to reveal intratumor heterogeneity in various primary 
tumors, such as breast cancer [6, 49, 74], lung cancer [75], 
brain cancer [76], colon cancer [33, 77], bladder cancer 
[78], acute myeloid leukemia [79, 80] and melanoma [81].

Navin et al. [6] first applied single nucleus sequencing 
(SNS) to study tumor population structure and evolution 
in two breast cancer cases by analysis of genome copy 
number variation. The results found punctuated clonal 
evolution in tumors and confirmed that metastatic cells 
emerged from a main advanced expansion. Another study 
used nuc-seq to find a difference in the pattern of occur-
rence for aneuploid rearrangements and point muta-
tions in breast tumor evolution [49]. Furthermore, Eirew 
et  al. [74] studied the dynamics of genomic clones in 
breast cancer patient xenografts at single cell resolution 
to indicate that  genomic  aberrations can be reproduc-
ible determinants of evolutionary trajectories. Interest-
ingly, a single cell whole genome sequencing study for 
colon cancer identified an abundant amount of mutated 
gene SLC12A5 at the individual level, which was sparse 
at the bulk cells level, and discovered that colon cancer 
had a biclonal origin [77]. However, another study using 
single cell exome sequencing to reveal the evolutionary 
process in bladder cancer indicated that 66 individual 
bladder cancer cells were derived from a single ances-
tral cell, but they developed into two distinct tumor cell 
subpopulations with subsequent evolution [78]. Single 
cell exome sequencing was also applied to elucidate the 
intratumoral genetic characteristics at a  single cell  level 
in a kidney cancer [8]. Additionally, the clonal evolution 
has been studied in hematopoietic tumors. Hughes et al. 
[79]. sequenced single cells from three myelodysplastic 
syndrome (MDS)-derived  secondary acute myeloid leu-
kemias (sAMLs) to confirm the clonal architecture that 
was identified from the bulk sample analysis. Single cell 
exome sequencing revealed a monoclonal evolution in a 
JAK2-negative  myeloproliferative  neoplasm and further 
identified candidate gene mutations for neoplasm  pro-
gression [7].

In addition to single cell DNA and exome sequencing 
applications, single cell RNA-seq has also been widely 
used to study clonal evolution in different cancers. Sin-
gle cell RNA-seq demonstrated subclonal heterogeneity 
in xenograft tumor cells and found a candidate tumor 
cell subpopulation associated with  anti-cancer  drug 
resistance in lung  adenocarcinoma (ADC) [75]. Equally, 
intertumor and intratumor heterogeneity was elucidated 
in melanoma by single cell RNA-seq [81]. Tirosh et  al. 
[76] used single cell RNA-seq to find a new subpopula-
tion marked with stem or progenitor cell-like charac-
teristics, which supported developmental programs in 
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oligodendroglioma. Furthermore, another study identi-
fied several rare tumor-related genes in squamous cell 
carcinoma of urinary bladder using single cell RNA-seq 
[81].

Recently, an array of studies that used SCS to under-
stand the necessary knowledge of different rare circu-
lating cancer cells have been published. Ni et  al. [82] 
combined MALBAC with NGS to elucidate the CNV pat-
terns for metastasis of  cancer in circulating tumor cells 
(CTCs) from lung ADC. Lohr et al. [83] sequenced entire 
exomes of CTCs from two prostate cancer patients and 
observed 73% CTC mutations that were identified in bulk 
tissue. The results were consistent with another study 
that compared CTCs with tissue using WGS in pros-
tate cancer [84]. Additionally, one study built a new sys-
tem to assess the genomic heterogeneity of single CTCs 
from metastatic breast cancer patients and found a cell 
subpopulation related to  drug resistance [85]. However, 
a recent study indicated that a targeted mutation detec-
tion rate is approximately 27.7% in CTCs from pancre-
atic cancer compared with bulk cells but is negative in 
white blood cells [86]. Furthermore, single CTCs studies 
based on whole RNA-seq have also been published. Lohr 
et  al. [87] classified multiple myeloma (MM) and quan-
titatively assessed prognosis related genes using single 
CTC  RNA-seq. Another CTC RNA-seq study revealed 
that noncanonical Wnt signaling took part in antiandro-
gen resistance in prostate cancer [88].

Immunology
The heterogeneity of the immune system contributes 
to an efficient defense against a multitude of different 
pathogens [89]. The SCS technologies can help to define 
new classifications and differentiation trajectories of 
immune cells. CD4+ T helper cell, which play a key role 
in adaptive immune responses, are further investigated to 
unravel the heterogeneity of this celluar population at the 
single cell level. Mahata et al. [90] used single cell RNA-
seq to reveal the extensive heterogeneity within the Th2 
population and to identify a new Th2 cell subpopulation 
marked with Cyp11a1 that modulated the steroid synthe-
sis pathway. Additionally, functional and structural stud-
ies of the T cell receptor repertoire have also benefited 
from SCS approaches. Dash et al. [91] developed a new 
method to sequence the TCRα and  TCRβ chains  from 
single CD8+  T cells. The data showed a characterized 
expression of TCRα for an influenza epitope. Another 
study combined TCRα and TCRβ sequencing with phe-
notypic analysis to reveal the clonal structure of T cells 
at the single cell level [92]. In addition to T cells, Shalek 
et  al. [93] examined the mouse bone-marrow-derived 
dendritic cells (BMDCs), which is an important antigen-
presenting cell subpopulation in the adaptive immune 

system, using single cell RNA-seq. The results indi-
cated that hundreds of immune  related genes displayed 
bimodal expression in single cells. Further study dem-
onstrated that paracrine signaling  from early-induced 
dendritic  cells plays an important role in inflammatory 
program [94]. Although the application of SCS to study 
the immune system is limited at present, SCS has shown 
robust potential for defining immune cell subpopulations 
and for examining gene expression variability, differential 
splicing and gene-regulatory networks [89].

Microbiology
The vast majority of microorganisms are uncultivated 
with current culturing methods which has extremely 
limited our ability to understand the biological diver-
sity of the microbiome [95]. Recently, the difficulty in 
microbial research has been overcome with the develop-
ment of SCS. The first study combined FACS with MDA 
to sequence single TM7 bacterial cells from the soil and 
gained a deep insight into the evolution and metabolism 
of these cells [96]. The member of TM7 phylum from the 
human mouth was also investigated in a similar method 
[97]. The subsequent study conducted the single cell 
genomic sequencing in other candidate uncultured phyla 
from different environments, including anoxic spring-
derived OP11 [98], human microbiota-derived SR1 [99], 
hospital sink biofilm-derived TM6 [100] and hot spring 
sediments-derived OP9 [101]. In addition to sequencing 
the genome of various bacterial phyla, SCS can reveal 
the lifestyle and metabolism of uncultivated microorgan-
isms, supporting the potential development of cultiva-
tion approaches and commercial applications. Marc et al. 
[102] sequenced over 70% of the genome of Beggiatoa 
from the surface of marine sediment and confirmed the 
chemolithoautotrophic physiology via investigating the 
pathway for sulfur oxidation, oxygen and nitrate respira-
tion, and carbon metabolism. The findings supported the 
establishment of a particulate cultivating environment in 
which there was coexistence of different members of the 
microbial community and some missing supplementary 
materials [95]. In another study, Mason et al. [103] used 
MDA to sequence and assemble the single cell genome 
of Oceanospirillales from seawater after the Deepwater 
Horizon oil spill and identified enzymes that can degrade 
crude oil.

Prenatal diagnosis
The application of SCS to prenatal diagnosis, includ-
ing pre-implantation genetic diagnosis (PGD) and non-
invasive prenatal diagnosis (NIPD) has greatly increased 
the opportunities for healthy birth [32]. Recently, SCS 
has been widely used to detect aneuploidy and SNPs in 
prenatal diagnosis. Well et  al. [104] used a rapid WDA 
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protocol to diagnosis of aneuploidy in embryo biopsy 
with high accuracy and cost-efficiency. In another study, 
Fiorentino et al. [105] confirmed the validation and accu-
racy of a single cell NGS-based method for aneuploidy 
screening in single blastomeres. In the subsequent study, 
they compared this protocol with array comparative 
genomic hybridization (array-CGH) and demonstrated 
that a single cell NGS-based method improved the ane-
uploidy detection with high-throughput, automation and 
reliability [106]. Furthermore, Vera-Rodríguez et al. [107] 
used single cell NGS to investigate the distribution pat-
terns of segmental aneuploidies in trophectoderm biopsy. 
The efficiency of NGS in the detection of pure and mosaic 
segmental aneuploidies equated with that of CGH. Lu 
et  al. [108] used MALBAC to sequence 99 sperm from 
an Asian male  to detect aneuploidy and single nucleo-
tide polymorphisms. The same method was used to 
accurately detect aneuploidy and SNPs in a single oocyte 
[109]. Additionally, using NIPD as a safe and reliable 
method to identify affected fetuses before birth is becom-
ing increasingly popular for clinical and research applica-
tions in combination with NGS technologies. Zhang et al. 
[110] used low-coverage massively parallel sequencing to 
detect CNVs in four single cells from peripheral blood. 
The sensitivity and specificity for CNVs and aneuploidies 
were 99.63 and 97.71%, respectively. Hua et al. [111] used 
WGA and Illumina MiSeq to sequence single fetal nucle-
ated red blood cells from placental villi and to diagnose 
aneuploidy in 5 cases in 10 single cells.

Neurobiology
Defining neuronal heterogeneity is an enormous task 
in nervous research [112]. SCS has been increasingly 
used to understand neural cell diversity and to classify 
neurons. Many studies have been reported to use single 
cell RNA-seq to classify the type of neurons in various 
regions of the mouse nervous system, including mono-
aminergic systems, dorsal root ganglia, cortex and retina 
[112]. Okaty et al. [113] used single cell RNA-seq to dis-
tinguish serotonergic neurons from five hindbrain rhom-
bomeres and confirmed the subpopulation grouped 
from the population-scale transcriptomes. Additionally, 
the subtype-specific behavioral function-related genes 
were identified at the single cell level. In another study, 
Zeisel et  al. [114] used large-scale single cell RNA-seq 
to sequence the neuronal cells from the somatosensory 
cortex and hippocampal CA1 region, and they identi-
fied an interneuron and a postmitotic oligodendro-
cyte labeled with Pax6 and ltpr2, respectively. Similarly, 
Tasic et al. [115] defined 49 transcriptomic cortical cell 
types, including 23 GABAergic, 19 glutamatergic and 7 
non-neuronal types based on single cell RNA sequenc-
ing. In humans, the structure and function of brain is 

more complex. Johnson et  al. [116] combined FACS 
and single cell RNA-seq to detect the heterogeneity in 
evolution of human outer radial glia (ORG). In another 
study, single cell RNA-seq was used to identify the tran-
scriptome diversity in adult and fetal brains. The results 
indicated that there was differential gene expression 
between adult and fetal neurons, and the gradient pat-
terns of gene expression contributed to the understand-
ing of the evolution of neurons in the brain [117]. The 
latest study used single nucleus RNA-seq to sequence 
the single neuron from six distinct regions of the human 
cerebral cortex and identified 16 neuronal subtypes with 
subtype-specific transcriptome profiles [118]. Addition-
ally, single cell DNA-seq was used for CNV detection 
in brain diseases. Using single cell DNA-seq, McCo-
nnell et al. [119] demonstrated that there were abundant 
mosaic  CNVs in  human  neurons, especially in  hiPSC-
derived neurons. In another study, Cai et al. [120] used 
WGS to find a somatic CNV of chromosome 1q in more 
than 20% of neurons in a hemimegalencephaly (HMG) 
patient.

Conclusions
Biological heterogeneity must be considered in clinical 
and basic studies. With the advancement of next-gen-
eration sequencing, SCS, including single cell genomic, 
transcriptomic and epigenomic sequencing, has been 
become the major tool to unlock the secrets of biologi-
cal diversity [41]. Recently, the application of SCS has 
been widespread in various research fields, such as 
cancer, immunology, microbiology, neurobiology and 
embryogenesis, and many successful commercial kits 
have emerged in the market [34]. Most exciting is the 
transformation of the use of SCS from bench to bedside. 
For example, SCS has been applied to the assessment of 
human embryos prior to implantation, non-invasive pre-
natal diagnosis and cancer diagnosis and prognosis [32]. 
However, there are still several shortcomings of SCS [10, 
25]. It is hard to comprehensively and simultaneously 
sequence the genome, transcriptome and epigenome in a 
single cell. The high cost of SCS impedes its clinical appli-
cation, and thus it will be a great challenge for research-
ers and engineers to provide highly efficient and low-cost 
technologies in SCS. Furthermore, in situ, real-time and 
in  vivo sequencing and analysis of the DNA and RNA 
from single cells will be a new field that obtains deep 
insight into the spatial and temporal measurement of 
the molecular profiles of single cells. Lastly, new analysis 
models for the enormous data obtained from SCS should 
be built to unbiasedly mine the inherent properties of a 
single cell. Although still evolving, new SCS technologies 
have become powerful approaches for us to unravel the 
complexities of nature.
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